[1] Vicente-Serrano SM, Quiring SM, Pena-Gallardo M, et al. A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 2020, 201: 102953 [2] Goulden ML, Bales RC. California forest die-off linked to multi-year deep soil drying in 2012-2015 drought. Nature Geoscience, 2019, 12201: 632-637 [3] Tang ZM, Sayer MAS, Chambers JL, et al. Interactive effects of fertilization and throughfall exclusion on the physiological responses and whole-tree carbon uptake of mature loblolly pine. Canadian Journal of Botany, 2004, 82: 850-861 [4] Seidl R, Thom D, Kautz M, et al. Forest disturbances under climate change. Nature Climate Change, 2017, 7: 395-402 [5] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [6] Vitasse Y, Bottero A, Cailleret M, et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 2019, 25: 3781-3792 [7] Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixedversus pure forests: Evidence of stress release by inter-specific faci-litation. Plant Biology, 2013, 15: 483-495 [8] 肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异. 应用生态学报, 2021, 32(10): 3487-3496 [9] 曹新光, 胡红兵, 李颖俊, 等. 亚热带人工和天然马尾松、杉木林生长对干旱的生态弹性差异. 应用生态学报, 2021, 32(10): 3531-3538 [10] Alessandra B, David IFM. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Global Change Biology, 2021, 27: 4403-4419 [11] 张文涛, 江源, 王明昌, 等. 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 2015, 35(19): 6481-6488 [12] 熊千志, 杜恩在, 薛峰, 等. 塞罕坝地区人工针叶林径向生长对水热条件的响应. 生态学报, 2022, 42(13): 5371-5380 [13] 江源, 杨艳刚, 董满宇, 等. 芦芽山林线白杄与华北落叶松径向生长特征比较. 应用生态学报, 2009, 20(6): 1271-1277 [14] Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 1983, 43: 69-78 [15] Cook ER, Holmes RL. Program ARSTAN User’s Manual. Tucson, USA: Laboratory of Tree-ring Research, University of Arizona, 1984, 15: 50-65 [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.气象干旱等级(GB/T 20481—2017). 北京: 中国标准出版社, 2017 [17] Yuan S, Quiring SM. Drought in the US Great Plains (1980-2012): A sensitivity study using different me-thods for estimating potential evapotranspiration in the Palmer drought severity index. Journal of Geophysical Research, 2014, 119: 10996-11010 [18] 李晓琴, 张凌楠, 曾小敏, 等. 黄土高原中部针叶树与灌木径向生长对气候的响应差异. 生态学报, 2020, 40(16): 5685-5697 [19] 张晓, 潘磊磊, Semyung Kwon, 等. 沙地天然樟子松径向生长对干旱的响应. 北京林业大学学报, 2018, 40(7): 27-35 [20] Lv P, Rademacher T, Huang X, et al. Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees. Agricultural and Forest Meteorology, 2022, 326: 109183 [21] Wu XC, Liu HY, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 2018, 24: 504-516 [22] 徐贺年, 王江林, 彭小梅, 等. 青藏高原东北部祁连圆柏径向生长对不同类型干旱的响应. 应用生态学报, 2022, 33(8): 2097-2104 [23] 王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 2003, 27(1): 23-33 [24] Liu Y, Linderholm HW, Song HM, et al. Temperature variations recorded in Pinus tabuliformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 38: 285-291 [25] 杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异. 应用生态学报, 2021, 32(10): 3415-3427 [26] Takahashi K, Aoki K. Effects of climatic conditions on annual shoot length and tree-ring width of alpine dwarf pine Pinus pumila in central Japan. Journal of Plant Research, 2015, 128: 553-562 [27] 陈峰, 袁玉江, 魏文寿, 等. 腾格里沙漠南缘近315年5—6月PDSI指数变化. 地理科学, 2011, 31(4): 434-439 [28] Gruber A, Pirkebner D, Florian C, et al. No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. Plant Biology, 2012, 14: 142-148 [29] Anderegg WR, Plavcová L, Anderegg LD, et al. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Global Change Biology, 2013, 19: 1188-1196 [30] Grossiord C, Buckley TN, Cernusak LA, et al. Plant responses to rising vapor pressure deficit. New Phytologist, 2020, 226: 1550-1566 [31] McDowell N, Pockman WT, Allen CD, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 2008, 178: 719-739 [32] Vitali V, Büntgen U, Bauhus J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology, 2017, 23: 5108-5119 [33] Jiang Y, Zhang Y, Guo Y, et al. Intra-annual xylem growth of Larix principis-rupprechtii at its upper and lo-wer distribution limits on the Luyashan Mountain in north-central China. Forests, 2015, 6: 3809-3827 [34] Zhang X, Li X, Manzanedo RD, et al. High risk of growth cessation of planted larch under extreme drought. Environmental Research Letters, 2021, 16: 014040 [35] Rennenberg H, Loreto F, Polle A, et al. Physiological responses of forest trees to heat and drought. Plant Bio-logy, 2006, 8: 556-571 [36] Zhang LN, Jiang Y, Zhao SD, et al. Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, Northwestern China. Forests, 2018, 9: 135 [37] 申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程. 林业科学, 2020, 56(6): 1-11 [38] Augustaitis A, Bytnerowicz A, Paoletti E. Biological reactions of forests to climate change and air pollution. Environmental Pollution, 2014, 184: 657-658 [39] Martinez-Vilalta J, Lopez BC, Loepfe L, et al. Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia, 2012, 168: 877-888 [40] Castellano PL, Srur AM, Bianchi LO. Climate-growth relationships of deciduous and evergreen Nothofagus species in Southern Patagonia, Argentina. Dendrochronologia, 2019, 58: 125646 |