[1] 何池全, 赵魁义, 余国营, 等. 湿地生态过程研究进展. 地球科学进展, 2000, 15(2): 165-171 [2] Zak D, Hupfer M, Cabezas A, et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth Science Reviews, 2021, 212: 103364, https://doi.org/10.1016/j.earscirev.2020.103446 [3] Jørgensen BB, Fenchel T. The sulfur cycle of a marine sediment model system. Marine Biology, 1974, 24: 189-201 [4] Howarth RW, Teal JM. Sulfate reduction in a New England salt marsh. Limnology and Oceanography, 1979, 24: 999-1013 [5] 尹希杰, 孙治雷, 徐勇航, 等. 35SO42-示踪法测定九龙江河口沉积中硫酸盐还原速率. 海洋学报, 2015, 37(4): 83-93 [6] Yang XN, Huang S, Wu QH, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment. Journal of Soils and Sediments, 2012, 12(9): 1435-1444 [7] Guo WR, Cecchetti AR, Wen Y, et al. Sulfur cycle in a wetland microcosm: Extended 34S-stable isotope analysis and mass balance. Environmental Science and Techno-logy, 2020, 54: 5498-5508 [8] Sela-Adler M, Ronen Z, Herut B, et al. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Frontiers in Microbiology, 2017, 8: 00766, doi: 10.3389/fmicb.2017.00766 [9] Mandernack KW, Lynch L, Krouse HR, et al. Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry. Geochimica et Cosmochimica Acta, 2000, 64: 3949-3964 [10] Zhang YL, Li J, Leng ZR, et al. The influence of root exudate flavonoids on sulfur species distribution in mangrove sediments polluted with cadmium. Wetlands, 2020, 40: 2671-2678 [11] Ferreira TO, Otero XL, Vidal-Torrado P, et al. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 2007, 142: 36-46 [12] Koretsky CM, Haveman M, Cuellar A, et al. Influence of Spartina and Juncus on saltmarsh sediments. Ⅰ. Pore water geochemistry. Chemical Geology, 2008, 255: 87-99 [13] 张骁栋. 互花米草与蟹类扰动对崇明东滩植物种间关系及生地化循环的影响. 博士论文. 上海: 复旦大学, 2012 [14] 方安琪, 贺志理, 王成, 等. 红树林沉积物中微生物驱动硫循环研究进展. 微生物学报, 2020, 60(1): 13-25 [15] Morrisey DJ, DeWitt TH, Roper DS, et al. Variation in the depth and morphology of burrows of the mud crab Helice crassa among different types of intertidal sediment in New Zealand. Marine Ecology Progress Series, 1999, 182: 231-242 [16] Teuchies J, Singh G, Bervoets L, et al. Land use changes and metal mobility: Multi-approach study on tidal marsh restoration in a contaminated estuary. Science of the Total Environment, 2013, 449: 174-183 [17] 魏巍, 许艳丽, 宋长春, 等. 三江平原沼泽湿地开垦及恢复对土壤硫酸盐还原菌数量分布的影响. 湿地科学, 2008, 6(2): 298-303 [18] Hoppala G, Bush R, Moon E, et al. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation. Journal of Environmental Management, 2017, 186: 158-166 [19] 陈冰冰, 孙志高, 孙文广, 等. 外源氮输入对生长季黄河口碱蓬湿地土壤无机硫形态变化特征的影响. 水土保持学报, 2018, 32(5): 277-286 [20] Beck M, Dellwig O, Liebezeit G, et al. Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments. Estuarine, Coastal and Shelf Science, 2008, 79: 307-316 [21] 吴又先, 潘淑贞, 丁昌璞. 土壤中硫的氧化还原及其生态学意义. 土壤学进展, 1993, 21(4): 9-17 [22] 童晓雨, 孙志高, 曾阿莹, 等. 闽江河口互花米草海向入侵对湿地土壤无机硫赋存形态的影响. 应用生态学报, 2019, 30(1): 3518-3526 [23] 杜云鸿, 谢文霞, 杜慧娜, 等. 湿地生态系统还原性硫气体自然释放研究. 地球与环境, 2016, 44(2): 231-236 [24] Connell WE, Patrick Jr WH. Sulfate reduction in soil: Effects of redox potential and pH. Science, 1968, 159: 86-87 [25] 陈俊松, 杨渐, 蒋宏忱. 湖泊硫循环微生物研究进展. 微生物学报, 2020, 60(6): 1177-1191 [26] 林惠荣, 施积炎, 傅晓萍, 等. 硫对铅污染水稻土微生物活性及群落结构的影响. 应用生态学报, 2010, 21(7): 1829-1834 [27] Van Erk MR, Meier DV, Ferdelman T, et al. Kelp depo-sition changes mineralization pathways and microbial communities in a sandy beach. Limnology and Oceano-graphy, 2020, 65: 3066-3084 [28] Adamczyk WZ, Król M, Kobus J. Microbial oxidation of elemental sulphur in brown soil. Plant and Soil, 1975, 43: 95-100 [29] Delaune RD, Devai I, Lindau CW. Flux of reduced sulfur gases along a salinity gradient in Louisiana coastal marshes. Estuarine, Coastal and Shelf Science, 2002, 54: 1003-1011 [30] Tang XJ, Li LY, Wu C, et al. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers. Environmental Pollution, 2020, 264:114679, https://doi.org/10.1016/j.envpol.2020.114679 [31] King GM. Utilization of hydrogen, acetate, and ‘noncompetitive' substrates by methanogenic bacteria in marine sediments. Geomicrobiology Journal, 1984, 3: 275-306 [32] Weston NB, Vile MA, Neubauer SC, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry, 2011, 102: 135-151 [33] 胡敏杰, 邹芳芳, 仝川, 等. 氮、硫输入对河口湿地土壤有机碳矿化的实验研究. 环境科学学报, 2016, 36(11): 4184-4192 [34] Hausmann B, Knorr KH, Schreck K, et al. Consortia of low-abundance bacteria drive sulfate reduction-depen-dent degradation of fermentation products in peat soil microcosms. The ISME Journal, 2016, 10: 2365-2375 [35] 李金业, 陈庆锋, 尹志超, 等. 湿地甲烷厌氧氧化机制研究进展. 土壤学报, 2020, 57(6): 1353-1364 [36] Sun ZG, Jiang HH, Wang LL, et al. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 2013, 369: 317-333 [37] Timmers P, Suarez-Zuluaga D, Van RM, et al. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME Journal, 2016, 10: 1400-1412 [38] Bejarano-Ortiz DI, Huerta-Ochoa S, Thalasso F, et al. Kinetic constants for biological ammonium and nitrite oxidation processes under sulfide inhibition. Applied Biochemistry and Biotechnology, 2015, 177: 1665-1675 [39] Joye SB, Hollibaugh JT. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science, 1995, 270: 623-625 [40] Plummer P, Tobias C, Cady D. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide. Journal of Geophysical Research: Biogeoences, 2015, 120: 1958-1972 [41] Zhu J, He Y, Zhu YH, et al. Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments. Environmental Reviews, 2017, 26: 121-132 [42] Rikmann E, Zekker I, Tomingas M. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater. Biodegradation, 2012, 23: 509-524 [43] Li YY, Wang YL, Wan DJ, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresource Technology, 2020, 300: 122682, https://doi.org/10.1016/j.biortech.2019.122682 [44] 饶清华, 李家兵, 胡敏杰, 等. 亚热带河口潮滩湿地N2O排放对氮硫增强输入的响应. 环境科学学报, 2018, 38(5): 2045-2054 [45] Yang JS, Liu Y, Shen Z, et al. Short-term effects of NaCl and Na2SO4 on nitrogen mineralization in the soil in three marshes of the Liaohe River estuary. Catena, 2021, 196: 104828, https://doi.org/10.1016/j.catena.2020.104828 [46] Wu SJ, Zhao YP, Chen YY, et al. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Science of the Total Environment, 2019, 657: 1294-1303 [47] Guan LC, Xia ZY, Jin LL, et al. Influence of sulfate reduction on fraction and regeneration of phosphorus at sediment-water interface of urban malodorous river. Environmental Science and Pollution Research, 2021, 28: 11540-11548 [48] Froelich PN, Klinkhammer GP, Bender ML, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 1979, 43: 1075-1090 [49] Zhao YP, Wu SJ, Yu MT, et al. Seasonal iron-sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments. Science of the Total Environment, 2021, 768: 144336 [50] Dierberg FE, Debusk TA, Larson NR, et al. Effects of sulfate amendments on mineralization and phosphorus release from South Florida (USA) wetland soils under anaerobic conditions. Soil Biology and Biochemistry, 2011, 43: 31-45 [51] Caraco NF, Cole JJ, Likens GE. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature, 1989, 341: 316-318 [52] Temporetti P, Beamud G, Nichela D, et al. The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient. Chemosphere, 2019, 228: 287-299 [53] Hu MJ, Peñuelas J, Sardans J, et al. Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estua-rine freshwater-oligohaline gradient. Geoderma, 2020, 365: 114236, https://doi.org/10.1016/j.geoderma.2020.114236 [54] Postma D, Jakobsen R. Redox zonation: Equilibrium constraints on the Fe(Ⅲ)/SO4- reduction interface. Geochimica et Cosmochimica Acta, 1996, 60: 3169-3175 [55] Flynn TM, O'Loughlin EJ, Mishra B, et al. Sulfur-mediated electron shuttling during bacterial iron reduction. Science, 2014, 344: 1039-1042 [56] Koretsky CM, Moore CM, Lowe KL, et al. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry, 2003, 64: 179-203 [57] íma J, Diáková K, Holcová V. Redox processes of sulfur and manganese in a constructed wetland. Chemistry and Biodiversity, 2007, 4: 2900-2912 [58] Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science and Technology, 2010, 44: 15-23 [59] Sun ZG, Li JB, He T, et al. Spatial variation and toxi-city assessment for heavy metals in sediments of interti-dal zone in a typical subtropical estuary (Min River) of China. Environmental Science and Pollution Research, 2017, 24: 23080-23095 [60] Shi WJ, Song WJ, Zheng JL, et al. Factors and pathways regulating the release and transformation of arsenic mediated by reduction processes of dissimilated iron and sulfate. Science of the Total Environment, 2021, 768: 144697, https://doi.org/10.1016/j.scitotenv.2020.144697 [61] 李晓, 孙志高, 李亚瑾, 等. 闽江河口湿地土壤对痕量元素吸附-解吸特征及其对pH值变化的响应. 环境科学学报, 2020, 40(5): 1807-1820 |