[1] 代力民, 陈高, 邓红兵, 等. 受干扰长白山阔叶红松林林分结构组成特征及健康距离评估. 应用生态学报, 2004, 15(10): 1750-1754 [2] 于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程. 应用生态学报, 2019, 30(5): 1426-1434 [3] 徐振邦, 代力民, 等. 长白山红松阔叶混交林森林天然更新条件的研究. 生态学报, 2001, 21(9): 1413-1420 [4] 崔婉莹, 刘思佳, 魏亚伟, 等. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响. 应用生态学报, 2019, 30(5): 1454-1462 [5] 王晓雨, 王守乐, 唐杨, 等. 长白山阔叶红松林3个主要树种的非结构性碳储存特征. 应用生态学报, 2019, 30(5): 1608-1614 [6] 李俊清, 李景文. 中国东北小兴安岭阔叶红松林更新及其恢复研究. 生态学报, 2003, 23(7): 1268-1277 [7] 郑洁, 胡美君, 郭延平. 光质对植物光合作用的调控及其机理. 应用生态学报, 2008, 19(7): 1619-1624 [8] 刘慎谔. 关于大小兴安岭的森林更新问题. 林业科学, 1957, 3(3): 263-280 [9] Zhang M, Yan Q, Zhu JJ. Optimum light transmittance for seed germination and early seedling recruitment of Pinus koraiensis: Implications for natural regeneration. iForest-Biogeosciences and Forestry, 2015, 8: 853-859 [10] Zhou G, Liu Q, Xu Z, et al. How can the shade intolerant Korean pine survive under dense deciduous canopy? Forest Ecology and Management, 2020, 457: 117735 [11] Zhang M, Zhu J, Li M, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels. Forest Ecology and Management, 2013, 306: 234-242 [12] Sun Y, Zhu J, Sun O J, et al. Photosynthetic and growth responses of Pinus koraiensis seedlings to canopy openness: Implications for the restoration of mixed-broad-leaved Korean pine forests. Environmental and Experimental Botany, 2016, 129: 118-126 [13] 周永斌, 姜萍, 王庆礼, 等. 长白山不同针叶树耐阴性的形态适应及内源激素调控. 应用生态学报, 1999, 10(5): 525-528 [14] Wang Q, Robson TM, Pieristè M, et al. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. Journal of Ecology, 2020, 108: 1923-1940 [15] Razzak A, Ranade SS, Strand Å, et al. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light: Scots pine response to light intensity and shade. Plant, Cell & Environment, 2017, 40: 1332-1340 [16] Wei H, Hauer RJ, Chen G, et al. Growth, nutrient assimilation, and carbohydrate metabolism in Korean Pine (Pinus koraiensis) seedlings in response to light spectra. Forests, 2019, 11: 44 [17] Hartikainen SM, Pieristè M, Lassila J, et al. seasonal patterns in spectral irradiance and leaf UV-A absorbance under forest canopies. Frontiers in Plant Science, 2020, 10: 1762 [18] Poorter H, Remkes C. Leaf-area ratio and net assimilation rate of 24 wild-species differing in relative growth-rate. Oecologia, 1990, 83: 553-559 [19] Oguchi R, Hiura T, Hikosaka K. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understory tree seedlings in response to gap formations in a cool-temperate deciduous forest. Tree Physiology, 2017, 37: 1113-1127 [20] Cailly AL, Rizza F, Genty B, et al. Fate of excitation at PS II in leaves: The non-photochemical side. 10th FESPP Meeting, Florence, Italy, 1996: 36-45 [21] Benjamini Y, Hochberg Y. Controlling the false disco-very rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 1995, 57: 289-300 [22] Matthews JSA, Vialet-Chabrand S, Lawson T. Role of blue and red light in stomatal dynamic behaviour. Journal of Experimental Botany, 2020, 71: 2253-2269 [23] Wang Q, Liu C, Robson TM, et al. Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. Physiologia Plantarum, 2021, 173: 698-708 [24] Heijde M, Binkert M, Yin R, et al. Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 20326-20331 [25] Wang QW, Kamiyama C, Hidema J, et al. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands. Oecologia, 2016, 181: 1069-1082 [26] Wang QW, Hidema J, Hikosaka K. Is UV-induced DNA damage greater at higher elevation? American Journal of Botany, 2014, 101: 796-802 [27] Wang QW, Nagano S, Ozaki H, et al. Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species. Environmental and Experimental Botany, 2016, 131: 110-119 [28] 郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用. 生态学报, 2006, 26(4): 1047-1056 [29] Smith HL, McAusland L, Murchie EH. Don’t ignore the green light: Exploring diverse roles in plant processes. Journal of Experimental Botany, 2017, 68: 2099-2110 [30] Zhang T, Maruhnich SA, Folta KM. Green light induces shade avoidance symptoms. Plant Physiology, 2011, 157: 1528-1536 [31] Kono M, Noguchi K, Terashima I. Roles of the cyclic electron flow around PSI (CEF-PSI) and O-2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55: 990-1004 [32] Valladares F, Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 237-257 [33] Solanki T, Aphalo PJ, Neimane S, et al. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack. Plant Physiology and Biochemistry, 2019, 134: 40-52 [34] Jenkins GI. Photomorphogenic responses to ultraviolet-B light: Responses to UV-B. Plant, Cell & Environment, 2017, 40: 2544-2557 [35] Allorent G, Lefebvre-Legendre L, Chappuis R, et al. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 14864-14869 |