[1] IPCC. Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007 [2] 赵风华, 于贵瑞. 陆地生态系统碳-水耦合机制初探. 地理科学进展, 2008, 27(1): 34-40 [3] Reich PB, Tjoelker MG, Machado JL, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439: 457-461 [4] Ågren GI. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution & Systematics, 2008, 39: 153-170 [5] Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78: 9-19 [6] Zribi OT, Abdelly C, Debez A. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biology, 2011, 13: 872-880 [7] Huang ZQ, Liu B, Murray Davis, et al. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytologist, 2016, 210: 431-442 [8] 葛露露, 林宇, 孟庆权, 等. 滨海沙地人工林树种水分利用效率和叶片养分浓度比较及其关系分析. 西北植物学报, 2018, 38(7): 1332-1339 [9] 曾欢欢, 吴骏恩, 刘文杰. 丛林式橡胶林内植物水分利用效率与叶片养分含量. 亚热带植物科学, 2019, 48(2): 125-133 [10] Güsewell S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164: 243-266 [11] 李旭华. 长白山阔叶红松林区植被生产力与水分利用关系研究. 博士论文. 北京: 北京林业大学, 2019 [12] 田金园, 刁浩宇, 袁凤辉, 等. 长白山阔叶红松林演替序列水分利用效率特征. 应用生态学报, 2021, 32(4): 1221-1229 [13] 梁星云. 长白山阔叶红松林演替系列主要树种叶片功能性状与化学计量学研究. 博士论文. 北京: 中国林业科学研究院, 2017 [14] 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征. 应用生态学报, 2014, 25(3): 632-638 [15] 吴家兵, 关德新, 韩士杰, 等. 长白山地区红松和紫椴倒木呼吸研究. 北京林业大学学报, 2008, 30(2): 14-19 [16] Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984, 11: 539-552 [17] Diao HY, Wang AZ, Yuan FH, et al. Environmental effects on carbon isotope discrimination from assimilation to respiration in a coniferous and broad-leaved mixed forest of Northeast China. Forests, 2020, 11: 1156 [18] Woodruff DR, Mcculloh KA, Warren JM, et al. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant, Cell & Environment, 2010, 30: 559-569 [19] Duursma RA, Marshall JD. Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees, 2006, 20: 496-506 [20] Koch GW, Sillett SC, Jennings GM, et al. The limits to tree height. Nature, 2004, 428: 851-854 [21] 王云霓, 熊伟, 王彦辉, 等. 六盘山主要树种叶片稳定性碳同位素组成的时空变化特征. 水土保持研究, 2012, 19(3): 42-47 [22] Gower ST, Richards JH. Larches: Deciduous conifers in an evergreen world. Bioscience, 1990, 40: 818-826 [23] Valentini R, Anfodillo T, Ehleringer JR. Water sources and carbon isotope composition (δ13C) of selected tree species of the Italian Alps. Canadian Journal of Forest Research, 1994, 24: 1575-1578 [24] 渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示. 植物学报, 2001, 43(2): 186-192 [25] 王云霓, 熊伟, 王彦辉, 等. 宁夏六盘山8种木本植被的叶片水分利用效率. 生态环境学报, 2013, 22(12): 1893-1898 [26] Warren CR. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees, 2006, 20: 157-164 [27] Javier G, Jaume F, Maurici M, et al. Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf area in balearic endemic and non-endemic Mediterranean species. Annals of Botany, 2003, 92: 215-222 [28] Bush SE, Pataki DE, Hultine KR, et al. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia, 2008, 156: 13-20 [29] 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异. 应用生态学报, 2018, 29(2): 352-360 [30] Yang D, Zhang YJ, Song J, et al. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: Evidence from trees in Northeast China. Tree Physiology, 2019, 39: 729-739 [31] Bhagsari AS, Brown RH. Leaf photosynthesis and its correlation with leaf area. Crop Science, 1986, 26: 127-132 [32] 孔令仑, 黄志群, 何宗明, 等. 不同林龄杉木人工林的水分利用效率与叶片养分浓度. 应用生态学报, 2017, 28(4): 1069-1076 [33] Delzon S, Bosc A, Cantet L, et al. Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Annals of Forest Science, 2005, 62: 537-543 [34] 孔令仑, 林捷, 黄志群, 等. 武夷山不同海拔植物水分利用效率的变化及其与养分变化的关系. 应用生态学报, 2017, 28(7): 2102-2110 [35] Aerts R, Chapin F. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67 [36] 孙书存, 陈灵芝. 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 2001, 25(1): 76-82 [37] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征. 植物生态学报, 2010, 34(1): 48-48 [38] Li C, Wu C, Duan B, et al. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient. Trees, 2009, 23: 1109-1121 [39] Wang Z, Lu J, Yang H, et al. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant and Soil, 2014, 383: 301-312 [40] Townsend A. Controls over foliar N:P ratios in tropical rain forests. Ecology, 2007, 88: 107-118 [41] Lü CQ, Tian HQ. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres, 2007, 112, doi: 10.1029/2006JD007990 [42] Cornwell WK, Wright IJ, Turner J, et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Global Ecology and Biogeography, 2018, 27: 1056-1067 [43] Shangguan ZP, Shao MA, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany, 2000, 44: 141-149 [44] Ehleringer JR, Williams DG. Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. Western North American Naturalist, 2000, 60: 121-129 [45] Cernusak LA, Winter K, Turner BL. Leaf nitrogen to phosphorus ratios of tropical trees: Experimental assessment of physiological and environmental controls. New Phytologist, 2010, 185: 770-779 [46] Singh DK, Sale P, Pallaghy CK, et al. Phosphorus concentrations in the leaves of defoliated white clover affect abscisic acid formation and transpiration in drying soil. New Phytologist, 2010, 146: 249-259 [47] Figas A, Tomaszewska-Sowa M, Sawilska A, et al. Effect of phosphorus on the growth and photosynthetic pigments content of Helichrysum arenarium (L.) Moench plantlets in vitro cultures. Infrastructure and Ecology of Rural Areas, 2016, 2016: 697-704 |