[1] 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637 [2] Turetsky MR. The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 2003, 106: 395-409 [3] Chapin FSI, Oechel WC, Van CK, et al. The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia, 1987, 74: 310-315 [4] Han WX, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377-385 [5] 段永峰, 周青青, 吕小旭, 等. 贺兰山东麓不同植被类型叶片化学计量特征研究. 西北植物学报, 2020, 40(1): 113-120 [6] 肖向前, 张海阔, 冯娅斯, 等. 植物残体对青藏高原高寒草甸土壤、微生物和胞外酶C∶N∶P化学计量特征的影响. 应用生态学报, 2023, 34(1): 58-66 [7] Beckett RP. Pressure volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany, 1997, 79: 145-152 [8] 籍烨, 张朝晖. 喀斯特石漠生态系统不同自然演替阶段中苔藓植物多样性特征分析. 植物科学学报, 2014, 32(6): 577-585 [9] 景蕾, 芦建国, 夏雯. 南京市主城区苔藓植物多样性及其与环境的关系. 应用生态学报, 2018, 29(6): 1797-1804 [10] Lindo Z, Gonzalez A. The bryosphere: An integral and influential component of the Earth’s biosphere. Ecosystems, 2010, 13: 612-627 [11] Porada P, Weber B, Elbert W, et al. Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences, 2013, 10: 6989-7033 [12] Löbs N, Walter D, Barbosa CGG, et al. Microclimatic conditions and water content fluctuations experienced by epiphytic bryophytes in an Amazonian rain forest. Biogeosciences, 2020, 17: 5399-5416 [13] 吴玉环, 高谦, 程国栋, 等. 苔藓植物对全球变化的响应及其生物指示意义. 应用生态学报, 2002, 13(7): 895-900 [14] 安丽, 曹同, 俞鹰浩. 苔藓植物与环境重金属污染监测. 生态学杂志, 2006, 25(2): 201-206 [15] 玄雪梅, 王艳, 曹同, 等. 上海地区藓类环境生理学特性的初步研究. 应用生态学报, 2004, 15(11): 2117-2121 [16] Bansal P, Verma S, Srivastava A. Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta). Environmental Pollution, 2016, 216: 512-518 [17] 姬明飞, 姚航航, 张晓玮. 宝天曼自然保护区两种优势藓类植物C、N、P生态化学计量特征研究. 广西植物, 2017, 37(2): 204-210 [18] Sardans J, Penuelas J. Drought changes nutrient sources, content and stoichiometry in the bryophyte Hypnum cupressiforme Hedw. growing in a Mediterranean forest. Journal of Bryology, 2008, 30: 59-65 [19] Waite M, Sack L. Does global stoichiometric theory apply to bryophytes? Tests across an elevation × soil age ecosystem matrix on Mauna Loa, Hawaii. Journal of Ecology, 2011, 99: 122-134 [20] 陈昕, 欧阳明, 黄兰, 等. 江西官山2种苔藓植物叶片氮磷化学计量学特征. 南方林业科学, 2015, 43(6): 15-18 [21] Wang Z, Feng DF, Liu X, et al. Biogeographical patterns of community-level content of N and P and their stoichiometric ratios in subtropical forest floor bryophytes. Ecological Indicators, 2022, 143: 109369 [22] Huang JB, Liu WY, Li S, et al. Ecological stoichiometry of the epiphyte community in a subtropical forest canopy. Ecology and Evolution, 2019, 9: 14394-14406 [23] Fernández-Martínez M, Preece C, Corbera J, et al. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecology Letters, 2021, 24: 1375-1386 [24] 郑敬刚, 董东平, 赵登海, 等. 贺兰山西坡植被群落特征及其与环境因子的关系. 生态学报, 2008, 28(9): 4559-4567 [25] 季波, 许浩, 何建龙, 等. 宁夏贺兰山青海云杉林土壤碳储量研究. 生态科学, 2014, 33(5): 920-925 [26] 俞益民, 赵登海, 梅曙光, 等. 贺兰山地区青海云杉生长与环境的关系. 西北林学院学报, 1999, 14(1): 16-21 [27] 白学良, 赵连梅. 贺兰山苔藓植物物种多样性、生物量及生态学作用的研究. 内蒙古大学学报: 自然科学版, 1998, 29(1): 121-127 [28] 任运涛, 徐翀, 张晨曦, 等. 贺兰山青海云杉针叶C、N、P含量及其计量比随环境因子的变化特征. 干旱区资源与环境, 2017, 31(6): 185-191 [29] 白学良. 贺兰山苔藓植物彩图志. 银川: 阳光出版社, 2014 [30] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [31] Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408: 578-580 [32] Herbert DA, Williams M, Rastetter EB. A model ianalysis of N and P limitation on carbon accumulation in Amazonian secondary forest after altemate land-use abandonment. Bigechemistry, 2003, 65: 121-150 [33] Wang Z, Pi CY, Li XM, et al. Elevational patterns of carbon, nitrogen and phosphorus in understory bryophytes on the eastern slope of Gongga Mountain, China. Journal of Plant Ecology, 2019, 12: 781-786 [34] Elser JJ, Fagan WF, Kerkhoff AJ, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186: 593-608 [35] Strengbom J, Nordin A. Commercial forest fertilization causes long-term residual effects in ground vegetation of boreal forests. Forest Ecology and Management, 2008, 256: 2175-2181 [36] Coble AA, Hart SC. The significance of atmospheric nutrient inputs and canopy interception of precipitation during ecosystem development in pion-juniper woodlands of the southwestern USA. Journal of Arid Environments, 2013, 98: 79-87 [37] Hussain MZ, Hamilton SK, Robertson GP, et al. Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports, 2021, 11: 20367 [38] Pefuelas J, Filella I. Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. Global Change Biology, 2001, 7: 427-433 [39] Koerselman W, Meuleman AFM. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450 [40] 王凯, 沈潮, 孙冰, 等. 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 2018, 29(7): 2286-2294 [41] 吴玉环, 黄国宏, 高谦, 等. 苔藓植物对环境变化的响应及适应性研究进展. 应用生态学报, 2001, 12(6): 943-946 [42] Pott U, Turpin DH. Changes in atmospheric trace element deposition in the Fraser Valley, B. C. Canada from 1960 to 1993 measured by moss monitoring with Isothecium stoloniferum. Canadian Journal of Botany, 1996, 74: 1345-1353 [43] 汤国庆, 吴福忠, 杨万勤, 等. 高山森林林窗和生长基质对苔藓植物氮和磷含量的影响. 应用生态学报, 2018, 29(4): 1133-1139 [44] 黄欢, 张朝晖. 岩溶型铝土矿尾矿堆不同自然演替阶段苔藓植物多样性特征. 植物科学学报, 2017, 35(6): 807-814 [45] 冯超, 甘雨晨, 贺晓, 等. 草原矿区苔藓植物多样性及其与土壤理化性质的关系. 华东师范大学学报:自然科学版, 2022(1): 76-84 [46] 陈慧敏, 宋长春, 石福习, 等. 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响. 应用与环境生物学报, 2017, 23(5): 778-784 [47] Koranda M, Michelsen A. Mosses reduce soil nitrogen availability in a subarctic birch forest via effects on soil thermal regime and sequestration of deposited nitrogen. Journal of Ecology, 2021, 109: 1424-1438 |