[1] 初小静, 韩广轩. 气温和降雨量对中国湿地生态系统CO2交换的影响. 应用生态学报, 2015, 26(10): 2978-2990 [2] 刘亚男, 郗敏, 张希丽, 等. 中国湿地碳储量分布特征及其影响因素. 应用生态学报, 2019, 30(7): 2481-2489 [3] Pugh CA, Reed DE, Desai AR, et al. Wetland flux controls: How does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin? Biogeochemistry, 2018, 137: 15-25 [4] Kang XM, Li Y, Wang JZ, et al. Precipitation and temperature regulate the carbon allocation process in alpine wetlands: Quantitative simulation. Journal of Soils and Sediments, 2020, 20: 3300-3315 [5] 王永志, 刘胜林. 黄河三角洲芦苇湿地生态系统碳通量动态特征及其影响因素. 生态环境学报, 2021, 30(5): 949-956 [6] 杨东, 黎明, 李伟, 等. 运用神经网络评价水淹和未水淹条件下灰化苔草光合特性的变化. 华中农业大学学报, 2007, 26(4): 560-564 [7] Li TT, Qing Z, Chang ZG, et al. Performance of CH4MODwetland for the case study of different regions of natural Chinese wetland. Journal of Environmental Sciences, 2017, 57: 356-369 [8] Melillo JM, Mcguire AD, Kicklighter DW, et al. Global climate-change and terrestrial net primary production. Nature, 1993, 363: 234-240 [9] Raich JW, Rastetter EB, Melillo JM, et al. Potential net primary productivity in south America: Application of a global model. Ecological Applications, 1991, 1: 399-429 [10] Zhao BL, Zhung QL, Shurpall N, et al. North American boreal forests are a large carbon source due to wildfires from 1986 to 2016. Scientific Reports, 2021, 11: 7723 [11] Li T, Li H, Zhang Q, et al. Prediction of CH4 emissions from potential natural wetlands on the Tibetan Plateau during the 21st century. Science of the Total Environment, 2019, 657: 498-508 [12] 贾庆宇, 于文颖, 谢艳兵, 等. 芦苇湿地与玉米旱地近地层小气候特征对比. 气象与环境学报, 2016, 32(6): 7 [13] 付建新, 曹广超, 郭文炯. 1998—2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系. 应用生态学报, 2020, 31(4): 1203-1212 [14] 于东升, 史学正, 孙维侠, 等. 基于1∶100万土壤数据库的中国土壤有机碳密度及储量研究. 应用生态学报, 2005, 16(12): 2279-2283 [15] 周莉, 周广胜, 贾庆宇, 等. 盘锦湿地芦苇叶片气孔导度的模拟. 气象与环境学报, 2006, 22(4): 42-46 [16] Zhu Q, Zhuang QL. Parameterization and sensitivity analysis of a process-based terrestrial ecosystem model using adjoint method. Journal of Advances in Modeling Earth Systems, 2014, 6: 315-331 [17] Qu Y, Zhuang QL. Modeling leaf area index in north America using a process-based terrestrial ecosystem model. Ecosphere, 2019, 9: e02046 [18] Song MW, Jiang XH, Lei YX, et al. Spatial and temporal variation characteristics of extreme hydrometeorological events in the Yellow River Basin and their effects on vegetation. Natural Hazards, 2023, 2: doi: 10.1007/s11069-022-05745-6 [19] 张沁雨, 王海宾, 彭道黎, 等. 基于基准样地法和国产高分数据的湖南省森林植被碳储量估测. 应用生态学报, 2019, 30(10): 3385-3394 [20] 李瑞栋, 王文龙, 娄义宝, 等. 模拟降雨条件下砾石含量对塿土工程堆积体坡面产流产沙的影响. 应用生态学报, 2022, 33(11): 3027-3036 [21] 刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素. 应用生态学报, 2019, 30(7): 2309-2319 [22] Li YH, Zhao ML, Li FD. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake. Frontiers of Earth Science, 2018, 12: 611-624 [23] 孙静, 范文义, 于颖, et al. 基于InTEC模型的塔河森林净初级生产力影响因子定量分析. 应用生态学报, 2019, 30(3): 793-804 [24] 何奇瑾, 周广胜, 周莉, 等. 盘锦芦苇湿地水热通量计算方法的比较研究. 气象与环境学报, 2006, 22(4): 35-41 [25] 李艳, 姜楠, 高艳娜, 等. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应. 长江流域资源与环境, 2016, 25(11): 1738-1747 [26] 王莉雯, 卫亚星. 盘锦湿地净初级生产力时空分布特征. 生态学报, 2012, 32(19): 6006-6015 [27] 周艳莲, 居为民, 柳艺博. 1981—2019年全球陆地生态系统碳通量变化特征及其驱动因子. 大气科学学报, 2022, 45(3): 332-344 [28] He HL, Wang SQ, Li Z, et al. Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. National Science Review, 2019, 6: 505-514 [29] 宋德彬, 于君宝, 王光美, 等. 1961—2010年黄河三角洲湿地区年平均气温和年降水量变化特征. 湿地科学, 2016, 14(2): 248-253 [30] Zou C, Li H, Chen DH, et al. Spatial-temporal changes of carbon source/sink in terrestrial vegetation ecosystem and response to meteorological factors in Yangtze River Delta Region (China). Sustainability, 2022, 14: 10051 [31] Chu XJ, Han GX, Xing QH, et al. Changes in plant biomass induced by soil moisture variability drive interannual variation in the net ecosystem CO2 exchange over a reclaimed coastal wetland. Agricultural and Forest Meteorology, 2019, 264: 138-148 [32] 梁霞, 张利权, 赵广琦. 芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较. 生态学报, 2006, 26(3): 842-848 [33] Wu JQ, Wang HY, Li G, et al. Effects of rainfall amount and frequency on carbon exchange in a wet mea-dow ecosystem on the Qinghai-Tibet Plateau. Catena, 2022, 219: 106629 [34] 周英锋, 贾文丽, 马澍. 春季降雨分配变化对黄河三角洲滨海湿地优势种的影响. 山东林业科技, 2022(3): 36-42 [35] 贺文君, 韩广轩, 许延宁, 等. 潮汐作用下干湿交替对黄河三角洲盐沼湿地净生态系统CO2交换的影响. 应用生态学报, 2018, 29(1): 269-277 [36] 胡泓, 王东启, 李杨杰. 崇明东滩芦苇湿地温室气体排放通量及其影响因素. 环境科学研究, 2014, 27(1): 8 [37] 李荣平, 刘晓梅, 周广胜. 盘锦湿地芦苇物候特征及其对气候变化的响应. 气象与环境学报, 2006, 22(4): 30-34 [38] 王江涛, 仲启铖, 欧强, 等. 崇明东滩滨海围垦湿地生长季CO2通量特征. 长江流域资源与环境, 2015(3): 10 [39] 于贵瑞, 张黎, 何洪林, 等. 大尺度陆地生态系统动态变化与空间变异的过程模型及模拟系统. 应用生态学报, 2021, 32(8): 2653-2665 |