[1] Dong HY, Qian LW, Yan JF, et al. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environmental Monitoring and Assessment, 2020, 192: 585 [2] Luo M, Huang JF, Zhu WF, et al. Impacts of increa-sing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: A review. Hydrobiologia, 2019, 827: 31-49 [3] Luo X, Wang L, Dun M, et al. The accumulation and seasonal dynamic of the soil organic carbon in wetland of the Yellow River Estuary, China. Journal of Chemistry, 2014, 2014: 408923 [4] Zhang GL, Bai JH, Jia J, et al. Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta, China. Chinese Geographical Science, 2018, 28: 374-385 [5] Anton-Pardo M, Olmo C, Soria JM, et al. Effect of restoration on zooplankton community in a permanent interdunal pond. Annales De Limnologie-International Journal of Limnology, 2013, 49: 97-106 [6] Du YF, Gao S, Warwick RM, et al. Ecological functioning of free-living marine nematodes in coastal wetlands: An overview. Chinese Science Bulletin, 2014, 59: 4692-4704 [7] Moseman-Valtierra SM, Armaiz-Nolla K, Levin LA. Wetland response to sedimentation and nitrogen loading: Diversification and inhibition of nitrogen-fixing microbes. Ecological Applications, 2010, 20: 1556-1568 [8] Wei J, Liu XY, Wang CH, et al. Contrastive soil pro-perties, microbial structure and soil enzymes in the rhizosphere of scirpus triqueter and bulk soil in petroleum-contaminated wetland. Environmental Engineering and Management Journal, 2018, 17: 1701-1709 [9] Mitsch WJ, Gosselink JG. Wetlands. 5th Ed. Hoboken: John Wiley & Sons, 2015 [10] Li X, Wang XH, Yu JB, et al. Effect of water level and salinity on metal fractionation in sediments of the Yellow River Delta. Wetlands, 2020, 40: 2765-2774 [11] Li WB, Lv XF, Ruan JC, et al. Variations in soil bacterial composition and diversity in newly formed coastal wetlands. Frontiers in Microbiology, 2019, 9: 3256 [12] Yu JB, Li YZ, Han GX, et al. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 2014, 72: 589-599 [13] Hoyt S, Isensee K, Pidgeon E, et al. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and sea-grassess. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA: 2014 [14] Wang FM, Sanders CJ, Santos IR, et al. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 2021, 8: 140-150 [15] 易思亮. 中国海岸带蓝碳价值评估. 硕士论文. 厦门: 厦门大学, 2017 [16] 张安峰. 氮添加对黄河三角洲滨海湿地土壤有机碳矿化的影响. 山东林业科技, 2020, 50(2): 10-16 [17] 罗先香, 张贺, 贾红丽, 等. 黄河三角洲滨海湿地土壤有机碳矿化过程模拟研究. 中国海洋大学学报: 自然科学版, 2017, 47(6): 1-7 [18] Li YZ, Yang JS, Yu M, et al. Different effects of NaCl and Na2SO4 on the carbon mineralization of an estuarine wetland soil. Geoderma, 2019, 344: 179-183 [19] 陈雅文, 韩广轩, 赵明亮, 等. 基于DNDC模型评估水位变化对滨海湿地净生态系统CO2交换的影响. 生态环境学报, 2022, 30(2): 254-263 [20] 贺文君, 韩广轩, 许延宁, 等. 潮汐作用下干湿交替对黄河三角洲盐沼湿地净生态系统CO2交换的影响. 应用生态学报, 2018, 29(1): 269-277 [21] 王浩, 陈永金, 刘加珍, 等. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究. 生态环境学报, 2022, 31(1): 9-16 [22] 杜书栋, 白军红, 贾佳, 等. 黄河三角洲芦苇湿地土壤有机碳储量沿盐分梯度的变化特征. 环境科学学报, 2022, 42(1): 80-87 [23] Yu JB, Zhan C, LI YZ, et al. Distribution of carbon, nitrogen and phosphorus in coastal wetland soil related land use in the Modern Yellow River Delta. Scientific Reports, 2016, 6: 37940 [24] 于君宝, 王永丽, 董洪芳, 等. 基于景观格局的现代黄河三角洲滨海湿地土壤有机碳储量估算. 湿地科学, 2013, 11(1): 1-6 [25] Yu JB, Dong HF, Li YZ, et al. Spatiotemporal distribution characteristics of soil organic carbon in newborn coastal wetlands of the Yellow River Delta Estuary. Clean-Soil Air Water, 2014, 42: 311-318 [26] Sang L, Liu X, Sun DD, et al. Effect of tidal hydrology on soil anaerobic CO2 production of freshwater marsh in the Yellow River estuary wetland, China. Ecological Indicators, 2022, 145: 109747 [27] Sun DB, Yu M, Yu JB, et al. Responses of soil nutrient contents and eco-stoichiometric characteristics to fiddler crab activities in coastal wetland of the Yellow River Delta. Ecohydrology and Hydrobiology, 2022, 22: 454-465 [28] Qu FZ, Meng L, Yu JB, et al. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China. PLoS One, 2017, 12(12): e0189431 [29] 关道明. 中国滨海湿地. 北京: 海洋出版社, 2012 [30] 李博, 刘存歧, 王军霞, 等. 白洋淀湿地典型植被芦苇储碳固碳功能研究. 农业环境科学学报, 2009, 28(12): 2603-2607 [31] Qi M, Sun T, Zhang HY, et al. Maintenance of salt barrens inhibited landward invasion of Spartina species in salt marshes. Ecosphere, 2017, 8: e01982 [32] 焦乐, 孙涛, 杨薇, 等. 滨海湿地植物种群Allee效应驱动机制研究进展. 生态学报, 2022, 42(3): 423-432 [33] 张旸, 陈沈良, 谷国传. 黄河三角洲沿岸日潮区的空间分布与潮汐特征. 水动力学研究与进展, 2015, 30(5): 540-548 [34] 于淼, 栗云召, 屈凡柱, 等. 黄河三角洲滨海湿地退化过程的时空变化及预测分析. 农业资源与环境学报, 2020, 37(4): 484-492 [35] Yu M, Li YZ, Zhang K, et al. Studies on the dynamic boundary of the fresh-salt water interaction zone of estuary wetland in the Yellow River Delta. Ecological Engineering, 2023, 188: 106893 [36] 魏梦杰, 叶思源, 丁喜桂, 等. 黄河三角洲滨海湿地沉积环境演化与碳的累积. 海洋科学, 2015, 39(4): 64-72 [37] 丁喜桂, 王吉松, 赵广明, 等. 黄河三角洲滨海湿地演化过程中的碳埋藏效率及其控制因素. 中国地质, 2016, 43(1): 319-328 [38] 于君宝, 陈小兵, 孙志高, 等. 黄河三角洲新生滨海湿地土壤营养元素空间分布特征. 环境科学学报, 2010, 30(4): 855-861 [39] 宋红丽, 刘兴土, 王立志, 等. 不同干扰程度下黄河三角洲植被群落有机碳分布. 水土保持学报, 2018, 32(1): 190-196 [40] 姜俊彦, 黄星, 李秀珍, 等. 潮滩湿地土壤有机碳储量及其与土壤理化因子的关系——以崇明东滩为例. 生态与农村环境学报, 2015, 31(4): 540-547 [41] 郝翠, 李洪远, 李姝娟. 天津滨海湿地土壤有机碳储量及其影响因素分析. 环境科学研究, 2011, 24(11): 1276-1282 [42] 贾佳, 白军红, 高照琴, 等. 黄河三角洲潮间带盐沼土壤碳、氮含量和储量. 湿地科学, 2015, 13(6): 714-721 |