[1] Ngabire M, Wang T, Xue X, et al. Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sensing Applications: Society and Environment, 2022, 28: 100847 [2] Tian AH, Zhao JS, Fu CB, et al. Estimation of SO42- ion in saline soil using VIS-NIR spectroscopy under different human activity stress. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282: 121647 [3] Peng J, Biswas A, Jiang QS, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 2019, 337: 1309-1319 [4] Jia PP, Shang TH, Zhang JH, et al. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sen-sing data. Geoderma Regional, 2021, 25: e00399 [5] Abd El-Hamid HT, Hong G. Hyperspectral remote sen-sing for extraction of soil salinization in the northern region of Ningxia. Modeling Earth Systems and Environment, 2020, 6: 2487-2493 [6] Ge XY, Wang JZ, Ding JL, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 2019, 7: e6926 [7] 贾萍萍, 张俊华, 孙媛, 等. 基于实测高光谱和Landsat 8 OLI影像的土壤盐化和碱化程度反演研究. 土壤通报, 2020, 51(3): 511-520 [8] 张俊华, 贾科利. 典型龟裂碱土土壤水分光谱特征及预测. 应用生态学报, 2015, 26(3): 884-890 [9] Kahaer Y, Tashpolat N, Shi QD, et al. Possibility of Zhuhai-1 hyperspectral imagery for monitoring salinized soil moisture content using fractional order differentially optimized spectral indices. Water, 2020, 12: 3360 [10] 陈睿华, 尚天浩, 张俊华, 等. 不同光谱类型对银川平原土壤含盐量反演精度的影响与校正. 应用生态学报, 2022, 33(4): 922-930 [11] Jia PP, Zhang JH, He W, et al. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sensing, 2022, 14: 2602 [12] Hong YS, Liu YL, Chen YF, et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma, 2019, 337: 758-769 [13] Hong YS, Chen SC, Liu YL, et al. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena, 2019, 174: 104-116 [14] 陈睿华, 王怡婧, 张俊华, 等. 基于分数阶微分光谱指数的银川平原土壤含盐量反演 [EB/OL]. (2022-09-22) [2023-03-01]. http://kns.cnki.net/kcms/detail/21.1148.Q.20220922.1142.010.html [15] Lim HH, Cheon E, Lee DH, et al. Soil water content measurement technology using hyperspectral visible and near-infrared imaging technique. Journal of the Korean Geotechnical Society, 2019, 35: 51-62 [16] Pang GJ, Wang T, Liao J, et al. Quantitative model based on field-derived spectral characteristics to estimate soil salinity in Minqin County, China. Soil Science Society of America Journal, 2014, 78: 546-555 [17] 张智韬, 谭丞轩, 许崇豪, 等. 基于无人机多光谱遥感的玉米根域土壤含水率研究. 农业机械学报, 2019, 50(7): 246-257 [18] Fotheringham AS, Charlton M, Brunsdon C. The geography of parameter space: An investigation of spatial non-stationarity. International Journal of Geographical Information Systems, 1996, 10: 605-627 [19] 贾萍萍, 尚天浩, 张俊华, 等. 利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量. 农业工程学报, 2020, 36(17): 125-134 [20] 龙依, 蒋馥根, 孙华, 等. 基于带宽优选地理加权回归模型的深圳市植被碳储量反演. 生态学报, 2022, 42(12): 4933-4945 [21] Brady NC, Weil RR. 李保国, 徐建明, 译. 土壤学与生活. 北京: 科学出版社, 2019 [22] 于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量. 农业工程学报, 2016, 32(22): 138-145 [23] 尚天浩, 毛鸿欣, 张俊华, 等. 基于PCA敏感波段筛选与SVM建模的银川平原土壤有机质高光谱估算. 生态学杂志, 2021, 40(12): 4128-4136 [24] 张俊华, 尚天浩, 陈睿华, 等. 基于光谱FOD与优化指数的银川平原土壤有机质反演. 农业机械学报, 2022, 53(11): 379-387 [25] Wang XP, Zhang F, Kung HT, et al. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sensing of Environment, 2018, 218: 104-118 [26] 张子鹏, 丁建丽, 王敬哲, 等. 利用三维光谱指数定量估算土壤有机质含量: 以新疆艾比湖流域为例. 光谱学与光谱分析, 2020, 40(5): 1514-1522 [27] He ZH, Ma ZH, Li MC, et al. Selection of a calibration sample subset by a semi-supervised method. Journal of Near Infrared Spectroscopy, 2018, 26: 87-94 [28] Gu B, Sheng VS, Wang ZJ, et al. Incremental learning for v-Support Vector Regression. Neural Networks, 2015, 67: 140-150 [29] 陈科屹, 张会儒, 张博, 等. 基于地理加权回归拓展模型的天然次生林碳储量空间分布. 应用生态学报, 2021, 32(4): 1175-1183 [30] Hong YS, Chen YY, Yu L, et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS-NIR spectroscopy. Remote Sensing, 2018, 10: 479 [31] 王瑾杰, 丁建丽, 葛翔宇, 等. 分数阶微分技术在机载高光谱数据估算土壤含水量中的应用. 光谱学与光谱分析, 2022, 42(11): 3559-3567 [32] Ge XY, Ding JL, Teng DX, et al. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102969 [33] 刘全明, 成秋明, 王学, 等. 干旱灌区含盐土壤水分SAR反演建模. 灌溉排水学报, 2016, 35(增刊2): 46-50 [34] 陈宣强, 赵明松, 卢宏亮, 等. 基于3种地理加权回归方法的安徽省土壤pH空间预测制图对比研究. 地理科学, 2023, 43(1): 173-183 [35] 刘彦文, 刘成武, 何宗宜, 等. 基于地理加权回归模型的武汉城市圈生态用地时空演变及影响因素. 应用生态学报, 2020, 31(3): 987-998 [36] Were K, Bui DT, Dick ØB, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 2015, 52: 394-403 [37] Yu H, Lu J, Zhang GQ. An online Robust support vector regression for data streams. IEEE Transactions on Knowledge and Data Engineering, 2020, 34: 150-163 [38] 张俊华, 马天成, 贾科利. 典型龟裂碱土土壤光谱特征影响因素研究. 农业工程学报, 2014, 30(23): 158-165 [39] 孙媛, 贾萍萍, 尚天浩, 等. 基于地表高光谱与OLI影像的土壤含盐量和pH值估测. 干旱地区农业研究, 2021, 39(1): 164-174 |