[1] Kim K, Daly EJ, Gorzelak M, et al. Soil organic matter pools response to perennial grain cropping and nitrogen fertilizer. Soil and Tillage Research, 2022, 220: 105376 [2] Meng XT, BaoYL, Zhang XL, et al. Prediction of soil organic matter using different soil classification hierarchical level stratification strategies and spectral characteristic parameters. Geoderma, 2022, 411: 115696 [3] 尼加提·卡斯木, 茹克亚·萨吾提, 师庆东, 等. 基于优化光谱指数的土壤有机质含量估算. 农业机械学报, 2018, 49(11): 155-163 [4] 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017, 54(5): 1047-1056 [5] Zhang ZP, Ding JL, Zhu CM, et al. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degradation. Geoderma, 2021, 382: 114729 [6] 朱阿星, 杨琳, 樊乃卿, 等. 数字土壤制图研究综述与展望. 地理科学进展, 2018, 37(1): 66-78 [7] 方少文, 杨梅花, 赵小敏, 等. 红壤区土壤有机质光谱特征与定量估算——以江西省吉安县为例. 土壤学报, 2014, 51(5): 1003-1010 [8] Zeraatpisheh M, Ayoubi S, Mirbagheri Z, et al. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Regional, 2021, 27: e00440 [9] Reis AS, Rodrigues M, dos Santos GLAA, et al. Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures. Remote Sensing Applications: Society and Environment, 2021, 22: 100492 [10] Munnaf MA, Mouazen AM, Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning. Catena, 2022, 211: 106015 [11] 唐海涛, 孟祥添, 苏循新, 等. 基于CARS算法的不同类型土壤有机质高光谱预测. 农业工程学报, 2021, 37(2): 105-113 [12] 洪永胜, 朱亚星, 苏学平, 等. 高光谱技术联合归一化光谱指数估算土壤有机质含量. 光谱学与光谱分析, 2017, 37(11): 3537-3542 [13] 张子鹏, 丁建丽, 王敬哲, 等. 利用三维光谱指数定量估算土壤有机质含量:以新疆艾比湖流域为例. 光谱学与光谱分析, 2020, 40(5): 1514-1522 [14] Baumgardner MF, Silval RF, Biehl LL, et al. Reflectance properties of soils. Advances in Agronomy, 1986, 38: 1-44 [15] Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science of America Journal, 1995, 59: 364-372 [16] Schmitt M. Fractional derivative analysis of diffuse reflectance spectra. Applied Spectroscopy, 1998, 52: 840-846 [17] Cui SC, Zhou KF, Ding RF, et al. Estimation of soil copper content based on fractional-order derivative spectroscopy and spectral characteristic band selection. Spectrochemical Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 275: 121190 [18] Rinnan R, Rinnan A. Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of arctic soil. Soil Biology & Biochemistry, 2007, 39: 1664-1673 [19] Chen Y, Ma LX, Yu DS, et al. Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, 2022, 135: 108545 [20] Peng XT, Shi TZ, Song AH, et al. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sensing, 2014, 6: 2699-2717 [21] Meng XT, Bao YL, Liu JG, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111 [22] 贾萍萍, 尚天浩, 张俊华, 等. 利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量. 农业工程学报, 2020, 36(17): 125-134 [23] 尚天浩, 毛鸿欣, 张俊华, 等. 基于PCA敏感波段筛选与SVM建模的银川平原土壤有机质高光谱估算. 生态学杂志, 2021, 40(12): 4128-4136 [24] 何彤慧, 程志, 张玉峰, 等. 银川平原沟渠植物多样性特征及影响因素. 湿地科学, 2013, 11(3): 352-358 [25] Hong YS, Cheng SC, Liu YL, et al. Combination of fractional order derivative and memory based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near infrared spectroscopy. Catena, 2019, 214: 104-116 [26] Hong YS, Shen RL Chen H, et al. Estimating lead and zinc concentrations in periurban agricultural soils through reflectance spectroscopy: Effects of fractional order derivative and random forest. Science of the Total Environment, 2019, 165: 1969-1982 [27] Ihuoma SO, Madramootoo CA. Narrow-band reflectance indices for mapping the combined effects of water and nitrogen stress in field grown tomato crops. Biosystems Engineering, 2020, 192: 133-143 [28] Kennard W, Stone LA. Computer aided design of experiments. Technimetrics, 1969, 11: 137-148 [29] Viscarra RRA, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectral. Geoderma, 2010, 158: 46-54 [30] Vicente LE, Filho C. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 2011, 115: 1824-1836 [31] 张智韬, 劳聪聪, 王海峰, 等. 基于FOD和SVMDA-RF的土壤有机质含量高光谱预测. 农业机械学报, 2020, 51(1): 156-167 [32] 尚天浩, 陈睿华, 张俊华, 等. 基于实测高光谱与Sentinel-2B数据的银北土壤Na+含量估测. 应用生态学报, 2021, 32(3): 1023-1032 [33] 赵明松, 谢毅, 陆龙妹, 等. 基于高光谱特征指数的土壤有机质含量建模. 土壤学报, 2021, 58(1): 42-54 [34] Vahid K, Faramarz DA, Saeed Y, et al. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma, 2018, 318: 29-41 [35] Wang XP, Zhang F, Kuan HT, et al. New methods for improving the remote sensing estimation of soil organic matter content in the Ebinur Lake wetland national nature reserve in northwest China. Remote Sensing of Environment, 2018, 218: 104-118 [36] 郭燕, 纪文君, 吴宏海, 等. 基于野外VIS-NIR光谱的土壤有机质预测与制图. 光谱与光谱分析, 2013, 33(4): 1135-1140 [37] Stenberg B, ViscarraRossel RA, Mouazen MA, et al. Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 2010, 107: 163-215 [38] Shi TZ, Chen YY, Liu HZ, et al. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection. Applied Spectroscopy, 2014, 68: 831-837 [39] 纪文君, 李曦, 李成学, 等. 基于全谱数据挖掘技术的土壤有机质高光谱预测建模研究. 光谱学与光谱分析, 2012, 32(9): 2393-2398 [40] 刁淑娟, 刘春玲, 张涛, 等. 基于SVM的湖泊咸度等级遥感信息提取方法——以内蒙古巴丹吉林沙漠为例. 国土资源遥感, 2016, 28(4): 114-118 |