欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (8): 2194-2204.doi: 10.13287/j.1001-9332.202308.011

• • 上一篇    下一篇

黄河三角洲降水同位素变化特征及水汽来源

田超1,2*   

  1. 1中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101;
    2山东禹城农田生态系统国家野外科学观测研究站/中国科学院禹城综合试验站, 北京 100101
  • 收稿日期:2023-05-01 接受日期:2023-06-16 出版日期:2023-08-15 发布日期:2024-02-15
  • 通讯作者: *E-mail: tianc@igsnrr.ac.cn
  • 作者简介:田 超, 女, 1985年生, 博士。主要从事同位素生态水文研究。E-mail: tianc@igsnrr.ac.cn
  • 基金资助:
    国家自然科学基金项目(42007155,U2006212,U1906219)

Stable isotope compositions and vapor sources of precipitation in the Yellow River Delta, China

TIAN Chao1,2*   

  1. 1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2Shandong Yucheng Agro-ecosystem National Observation and Research Station/Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-05-01 Accepted:2023-06-16 Online:2023-08-15 Published:2024-02-15

摘要: 为揭示黄河三角洲盐碱地地区的降水来源、形成及影响机制,利用降水稳定同位素,特别是δ17O、17O-excess,以及气团轨迹模型HYSPLIT,研究黄河三角洲东营地区5—10月不同时间尺度及降水强度[(<5、5~10、10~25、25~50、>50 mm·d-1)]的降水同位素变化特征及水汽来源。结果表明: 5—10月降水同位素的变化范围较大,旱季降水的同位素变化范围小于雨季,且比雨季富集。降水强度<5 mm·d-1的降水,δ′18O[δ′18O=ln(δ18O+1)]与δ′17O[δ′17O=ln(δ17O+1)]的降水线斜率最小,为0.5211,降水易受水汽源地蒸发作用的影响;10 mm·d-1≤降水强度<25 mm·d-1时,斜率最大,为0.5268。对于0~50 mm·d-1 4种不同强度的降水,随降水量增多δ2H、δ18O和δ17O值均降低。旱季降水17O-excess与温度呈正相关,可能受到大陆循环水汽的影响;雨季降水17O-excess与相对湿度呈负相关,受蒸发作用较小。HYSPLIT气团轨迹模型表明,旱季降水主要受大陆性季风影响,而雨季降水受海洋性和大陆性季风的共同影响。综上,降水受不同水汽来源地蒸发、局地气象因素和大气水汽来源的共同影响,使得不同尺度同位素存在差异。本研究可为黄河三角洲地区紧缺的水资源分配提供科学依据。

关键词: δ2H, δ18O, δ17O, d-excess, 17O-excess, 水汽来源, 黄河三角洲

Abstract: To uncover the vapor source, formation mechanism, and the influence of meteorological factors on precipitation in the saline land of the Yellow River Delta, I employed stable isotopes of precipitation, especially for δ17O and 17O-excess, along with the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), to analyze the isotopic variation characteristics of precipitation and water vapor sources at different temporal scales and precipitation intensities [(<5, 5-10, 10-25, 25-50, >50 mm·d-1)] from May to October in Dongying, located in the Yellow River Delta. There were wide ranges of isotopes in the daily precipitation data between May and October, with smaller ranges and enriched average values during the dry season. The slope between δ′18O and δ′17O was the minimum of 0.5211 when precipitation intensity was below 5 mm·d-1, indicating the potential influence of evaporation from the moisture source site on precipitation. The maximum value was 0.5268 when precipitation intensity was between 10 mm·d-1 and 25 mm·d-1. For precipitation intensities below 50 mm·d-1 with four different intensities, δ2H, δ18O and δ17O decreased with the increase of precipitation. During the dry season, 17O-excess exhibited a positive relationship with temperature, suggesting the influence of continental circulating water vapor on precipitation. Conversely, in the wet season, 17O-excess displayed a negative relationship with relative humidity (RH), indicating less influence of evaporation. Analysis of air mass back trajectories using the HYSPLIT model indicated that precipitation during the dry season was primarily influenced by the continental monsoon, while precipitation during the wet season was affected by both oceanic and continental monsoons. In conclusion, precipitation in the Yellow River Delta is influenced by the evaporation of various water vapor sources, local meteorological factors, and atmospheric water vapor sources, resulting in different isotopic signatures across different scales. The fin-dings would provide a scientific basis for the allocation of scarce water resources in the Yellow River Delta.

Key words: δ2H, δ18O, δ17O, d-excess, 17O-excess, vapor source, Yellow River Delta.