[1] IPCC. Contribution of Working GroupⅠto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013 [2] Dong Q, Wang WG, Kunkel KE, et al. Heterogeneous response of global precipitation concentration to global warming. International Journal of Climatology, 2020, 41, doi: 10.1002/joc.6851 [3] Kulmatiski A, Beard KH. Woody plant encroachment facilitated by increased precipitation intensity. Nature Climate Change, 2013, 3: 833-837 [4] Prein AF, Rasmussen RM, Ikeda K, et al. The future intensification of hourly precipitation extremes. Nature Climate Change, 2017, 7: 48-52 [5] Zuo XA, Cheng H, Zhao SL, et al. Observational and experimental evidence for the effect of altered precipita-tion on desert and steppe communities. Global Ecology and Conservation, 2020, 21: 6702-6713 [6] Jin YQ, Li J, Liu CG, et al. Precipitation reduction alters herbaceous community structure and composition in a savanna. Journal of Vegetation Science, 2019, 30: 821-831 [7] Jia YY, Sun Y, Zhang T, et al. Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Eco-logy and Evolution, 2020, 10: 2196-2212 [8] Zhang RY, Schellenberg MP, Tian DS, et al. Shifting community composition determines the biodiversity-productivity relationship under increasing precipitation and N deposition. Journal of Vegetation Science, 2021, 32, doi: 10.1111/jvs.12998 [9] Zhong MX, Song J, Zhou ZX, et al. Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia, 2019, 191: 697-708 [10] 田晓燕, 陈敏, 路峰, 等. 黄河三角洲芦苇生长与根系分布特征对不同时期水盐胁迫的响应. 生态学杂志, 2019, 38(2): 404-411 [11] Andersen LH, Skærbæk AS, Sørensen TB, et al. Turnover and change in plant species composition in a shielded salt marsh following variation in precipitation and temperature. Journal of Vegetation Science, 2020, 31: 465-475 [12] 章光新. 水文情势与盐分变化对湿地植被的影响研究综述. 生态学报, 2012, 32(13): 4254-4260 [13] Dunton KH, Hardegree B, Whitledge TE. Response of estuarine marsh vegetation to interannual variations in precipitation. Estuaries, 2001, 24: 851-861 [14] Jones SF, Janousek CN, Casazza ML, et al. Seasonal impoundment alters patterns of tidal wetland plant diversity across spatial scales. Ecosphere, 2021, 12, doi: 10.1002/ecs2.3366 [15] Dai X, Yu ZB, Yang GS, et al. Role of flooding patterns in the biomass production of vegetation in a typical herbaceous wetland, Poyang Lake wetland, China. Frontiers in Plant Science, 2020, 11: 521358 [16] Lou YJ, Pan YW, Gao CY, et al. Response of plant height, species richness and aboveground biomass to flooding gradient along vegetation zones in floodplain wetlands, Northeast China. PLoS One, 2016, 11(4): doi: 10.1371/journal.pone.0153972 [17] Zhao ML, Han GX, Wu HT, et al. Inundation depth affects ecosystem CO2 and CH4 exchange by changing plant productivity in a freshwater wetland in the Yellow River Estuary. Plant and Soil, 2020, 454: 87-102 [18] Han GX, Chu XJ, Xing QH, et al. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 2015, 120: 1506-1520 [19] 陈亮, 孙宝玉, 韩广轩, 等. 降雨量增减对黄河三角洲滨海湿地土壤呼吸和芦苇光合特性的影响. 应用生态学报, 2017, 28(9): 2794-2804 [20] 李新鸽, 韩广轩, 朱连奇, 等. 降雨量改变对黄河三角洲滨海湿地土壤呼吸的影响. 生态学报, 2019, 39(13): 4806-4820 [21] 安乐生, 周葆华, 赵全升, 等. 黄河三角洲植被空间分布特征及其环境解释. 生态学报, 2017, 37(20): 6809-6817 [22] 贺强, 崔保山, 赵欣胜, 等. 黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系. 生态学报, 2009, 29(2): 676-687 [23] 管博, 于君宝, 陆兆华, 等. 黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响. 环境科学, 2011, 32(8): 2422-2429 [24] 宗敏, 韩广轩, 栗云召, 等. 基于MaxEnt模型的黄河三角洲滨海湿地优势植物群落潜在分布模拟. 应用生态学报, 2017, 28(6): 1833-1842 [25] 杨军, 詹伟, 王向涛. 10年围栏封育对藏北退化高寒草甸植物群落特征的影响. 中国草地学报, 2020, 42(6): 44-49 [26] 张钦弟, 卫伟, 陈利顶, 等. 黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局. 自然资源学报, 2018, 33(8): 1351-1362 [27] 张林静, 岳明, 顾峰雪, 等. 新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系.应用生态学报, 2002, 13(6): 658-662 [28] 江小雷, 岳静, 张卫国, 等. 生物多样性, 生态系统功能与时空尺度. 草业学报, 2010, 19(1): 219-225 [29] Zhang Y, Chen HYH, Reich PB. Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 2012, 100: 742-749 [30] 王军锋, 张丽华, 赵锐锋, 等. 荒漠草原区不同生活型植物生长对降水变化的响应. 应用生态学报, 2020, 31(3): 778-786 [31] Zhang LW, Wang BC, Qi LB. Phylogenetic relatedness, ecological strategy, and stress determine interspecific interactions within a salt marsh community. Aquatic Sciences, 2017, 79: 587-595 [32] Byrne KM, Adler PB, Lauenroth WK. Contrasting effects of precipitation manipulations in two Great Plains plant communities. Journal of Vegetation Science, 2017, 28: 238-249 [33] Hossain ML, Beierkuhnlein C. Enhanced aboveground biomass by increased precipitation in a central European grassland. Ecological Processes, 2018, 7: 37 [34] Buffington KJ, Goodman AC, Freeman CM, et al. Testing the interactive effects of flooding and salinity on tidal marsh plant productivity. Aquatic Botany, 2020, 164, doi: 10.1016/j.aquabot.2020.103231 |