[1] 宗学政, 田晓瑞. 可燃物处理对大兴安岭地区主要林型火行为的影响. 林业科学, 2021, 57(2): 139-149 [2] Thomas G, Rosalie V, Olivier C, et al. Modelling forest fire and firebreak scenarios in a mediterranean mountai-nous catchment: Impacts on sediment loads. Journal of Environmental Management, 2021, 289: 112497 [3] 宗学政, 田晓瑞. 林火行为和扑救技术研究进展. 世界林业研究, 2019, 32(6): 31-36 [4] Hawley F. Theoretical considerations regarding factors which influence forest fires. Journal of Forestry, 1926, 24: 756-763 [5] 赵璠, 舒立福, 周汝良, 等. 林火行为蔓延模型研究进展. 世界林业研究, 2017, 30(2): 46-50 [6] Fons WL. Analysis of fire spread in light forest fuels. Journal of Agricultural Research, 1946, 72: 93-121 [7] Albini FA. A model for fire spread in wildland fuels by-Radiation. Combustion Science & Technology, 1985, 42: 229-258 [8] Mestre DE, Catchpole EA, Anderson DH, et al. Uniform propagation of a planar fire front without wind. Combustion Science and Technology, 1989, 65: 231-244 [9] Morvan D, Larini M. Modeling of one dimensional fire spread in pine needles with opposing air flow. Combustion Science & Technology, 2001, 164: 37-64 [10] Mell W, Jenkins MA, Gould J, et al. A physics-based approach to modelling grassland fires. International Journal of Wildland Fire, 2007, 16: 1-22 [11] Rothermel RC. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Forest Service Research Paper, INT-115. Washington DC: USDA, 1972 [12] Lawson B, Stocks B, Alexander M, et al. A system for predicting fire behavior in Canadian forests. The 8th National Conference on Fire and Forest Meteorology, Detroit, MI, USA, 1985: 6-16 [13] van Wanger C, Stocks B, Lawson B, et al. Development and Structure of the Canadian Forest Fire Behavior Prediction System: Information Report ST-X-3. Ottawa: Forestry Canada, Science and Sustainable Development Directorate, 1992 [14] McArthur AG. Fire Behaviour in Eucalypt Forests. Canberra, ACT: Forestry and Timber Bureau, 1967 [15] 王正非. 山火初始蔓延速度测算法. 山地研究, 1983, 1(2): 42-51 [16] 王正非. 通用森林火险级系统. 自然灾害学报, 1992, 1(3): 39-44 [17] Finney MA. FARSITE: Fire Area Smulator-model Development and Evaluation. Research Paper RMRS-RP-4 Revised. Washington DC, USA: USDA Forest Service, Rocky Mountain Research Station, 2004 [18] Andrews PL. Current status and future needs of the BehavePlus Fire Modeling System. International Journal of Wildland Fire, 2013, 23: 21-33 [19] Scott JH, Reinhardt ED. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior. Research Paper RMRS-RP-29. Washington DC, USA: USDA Forest Service, Rocky Mountain Research Station, 2001 [20] Finney MA. An overview of FlamMap fire modelling capabilities// Andrews PL, Butler BW, eds. Fuels Management-How to Measure Success: Conference Proceedings. Washington DC, USA: USDA Forest Service, Rocky Mountain Research Station, 2006: 213-220 [21] McArthur AG. The fire control problem and fire research in Australia. Proceedings of the 1966 Sixth World Forestry Congress, Madrid, Spain, 1969, 2: 1986-1991 [22] Sullivan AL. Wildland surface fire spread modelling, 1990-2007. 2: Empirical and quasi-empirical models. International Journal of Wildland Fire, 2009, 18: 369-386 [23] 金森, 褚腾飞, 邸雪颖, 等. 平地无风条件下红松针叶床层林火蔓延的影响因子分析及模拟. 东北林业大学学报, 2012, 40(3): 51-57 [24] 张吉利, 刘礴霏, 褚腾飞, 等. 广义Rothermel模型预测平地无风条件下红松-蒙古栎林地表混合可燃物的火行为. 应用生态学报, 2012, 23(6): 1495-1502 [25] 潘登, 张合平, 潘高, 等. 基于Rothermel的南亚热带马尾松人工林潜在火行为研究. 中南林业科技大学学报, 2017, 37(6): 14-23 [26] 满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型. 林业科学, 2019, 55(7): 197-204 [27] 耿道通, 宁吉彬, 李兆国, 等. 基于Rothermel模型的红松人工林地表可燃物蔓延速率及参数修正. 北京林业大学学报, 2021, 43(11): 79-88 [28] Rodrigues M, Riva J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 2014, 57: 192-201 [29] Sevinc V, Kucuk O, Goltas M. A Bayesian network model for prediction and analysis of possible forest fire causes. Forest Ecology and Management, 2020, 457: 117723 [30] Singh KR, Neethu KP, Madhurekaa K, et al. Parallel SVM model for forest fire prediction. Soft Computing Letters, 2021, 3: 100014 [31] Al_Janabi S, Al_Shourbaji I, Salman MA. Assessing the suitability of soft computing approaches for forest fires prediction. Applied Computing and Informatics, 2018, 14: 214-224 [32] Breiman L. Random forests, machine learning 45. Journal of Clinical Microbiology, 2001, 2: 199-228 [33] 刘鑫源, 杨光, 宁吉彬, 等. 红松人工林地表可燃物燃烧释放颗粒物质量及影响因素. 林业科学, 2022, 58(3): 97-106 [34] 施光耀, 周宇, 桑玉强, 等. 基于随机森林方法分析环境因子对空气负离子的影响. 中国农业气象, 2021, 42(5): 390-401 [35] Delgado-Baquerizo M, Maestre FT, Reich PB, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7: 10541 [36] Yashwanth BL, Shotorban B, Mahalingam S, et al. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combustion and Flame, 2016, 163: 301-316 [37] Jr Nelson RM. An effective wind speed for models of fire spread. International Journal of Wildland Fire, 2002, 11: 153-161 [38] Anderson HE. Heat transfer and fire spread. Washington DC: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1969 |