[1] Weber B, Belnap J, Büdel B, et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 2022, 97: 1768-1785 [2] Belnap J, Büdel B. Biological soil crusts as soil stabilizers// Weber B, Büdel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Cham, Switzerland: Springer, 2016: 305-320 [3] Bowker MA, Reed SC, Maestre FT, et al. Biocrusts: The living skin of the earth. Plant and Soil, 2018, 429: 1-7 [4] 李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究. 科学通报, 2018, 63(23): 2320-2334 [5] 胡春宏, 张晓明. 黄土高原水土流失治理与黄河水沙变化. 水利水电技术, 2020, 51(1): 1-11 [6] 赵允格, 许明祥, 王全九, 等. 黄土丘陵区退耕地生物结皮对土壤理化性状的影响. 自然资源学报, 2006, 21(3): 441-448 [7] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局. 生态学报, 2016, 36(2): 377-386 [8] 杨凯, 赵允格, 马昕昕. 黄土丘陵区生物土壤结皮层水稳性. 应用生态学报, 2012, 23(1): 173-177 [9] Zhao YG, Xu MX. Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: Influence of biocrust patches and plant canopies. Journal of Hydrologic Engineering, 2013, 18: 387-393 [10] Gao LQ, Bowker MA, Xu MX, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry, 2017, 105: 49-58 [11] 肖波, 赵允格, 邵明安. 陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响. 生态学报, 2007, 27(11): 4662-4670 [12] 卜崇峰, 张朋, 叶菁, 等. 陕北水蚀风蚀交错区小流域苔藓结皮的空间特征及其影响因子. 自然资源学报, 2014, 29(3): 490-499 [13] Yang K, Zhao YG, Gao LQ, et al. Nonlinear response of hydrodynamic and soil erosive behaviors to biocrust coverage in drylands. Geoderma, 2022, 405: 115457 [14] Qiu DX, Bowker MA, Xiao B, et al. Mapping biocrust distribution in China’s drylands under changing climate. Science of the Total Environment, 2023, 905: 167211 [15] Lemke D, Hulme PE, Brown JA, et al. Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. Forest Ecology and Management, 2011, 262: 139-149 [16] Cutler DR, Edwards TC, Beard KH, et al. Random forests for classification in ecology. Ecology, 2007, 88: 2783-2792 [17] 张丙昌, 武志芳, 李彬. 黄土高原生物土壤结皮研究进展与展望. 土壤学报, 2021, 58(5): 1123-1131 [18] 杨巧云, 赵允格, 包天莉, 等. 黄土丘陵区不同类型生物结皮下的土壤生态化学计量特征. 应用生态学报, 2019, 30(8): 2699-2706 [19] 吉静怡, 赵允格, 杨凯, 等. 黄土丘陵区生物结皮坡面产流产沙与其分布格局的关联. 生态学报, 2021, 41(4): 1381-1390 [20] Rozenstein O, Adamowski J. A review of progress in identifying and characterizing biocrusts using proximal and remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2017, 57: 245-255 [21] Rodríguez-Caballero E, Román Fernández JR, Chamizo S, et al. Biocrust landscape-scale spatial distribution is strongly controlled by terrain attributes: Topographic thresholds for colonization in a semiarid badland system. Earth Surface Processes and Landforms, 2019, 44: 2771-2779 [22] 张元明, 陈晋, 王雪芹, 等. 古尔班通古特沙漠生物结皮的分布特征. 地理学报, 2005, 60(1): 53-60 [23] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述. 生态学报, 2010, 30(16): 4484-4492 [24] 吴玉环, 高谦, 于兴华. 生物土壤结皮的分布影响因子及其监测. 生态学杂志, 2003, 22(3): 38-42 [25] 赵允格, 许明祥, Belnap J. 生物结皮光合作用对光温水的响应及其对结皮空间分布格局的解译: 以黄土丘陵区为例. 生态学报, 2010, 30(17): 4668-4675 [26] 陈彦芹, 赵允格, 冉茂勇. 黄土丘陵区藓结皮人工培养方法试验研究. 西北植物学报, 2009, 29(3): 586-592 [27] Starks TL, Shubert LE, Trainor FR. Ecology of soil algae: A review. Phycologia, 1981, 20: 65-80 [28] Bowker MA, Belnap J, Miller ME. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangeland Ecology and Management, 2006, 59: 519-529 [29] Rodriguez-Caballero E, Belnap J, Büdel B, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11: 185-189 [30] Eldridge DJ, Guirado E, Reich PB, et al. The global contribution of soil mosses to ecosystem services. Nature Geoscience, 2023, 16: 430-438 |