[1] Mitsch WJ, Bernal B, Nahlik AM, et al. Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28: 583-597 [2] Kayranli B, Scholz M, Mustafa A, et al. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands, 2010, 30: 111-124 [3] Alm J, Schulman L, Walden J, et al. carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 1999, 80: 161-174 [4] Pullens JWM, Sottocornola M, Kiely G, et al. Carbon fluxes of an alpine peatland in Northern Italy. Agricultural and Forest Meteorology, 2016, 220: 69-82 [5] Chivers MR, Turetsky MR, Waddington JM, et al. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems, 2009, 12: 1329-1342 [6] Chen H, Wu N, Wang YF, et al. Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: A three-year study. PLoS One, 2013, 8(1): e53878 [7] Laiho R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 2006, 38: 2011-2024 [8] Xiao DR, Deng L, Kim DG, et al. Carbon budgets of wetland ecosystems in China. Global Change Biology, 2019, 25: 2061-2076 [9] Hirota M, Tang YH, Hu QW, et al. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems, 2006, 9: 673-688 [10] Gao JQ, Feng J, Zhang XW, et al. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil. Catena, 2016, 145: 285-290 [11] Erwin KL. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 2009, 17: 71-84 [12] Nieberding F, Wille C, Ma YM, et al. Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem. Journal of Geophysical Research-Biogeosciences, 2021, 126: 10.1029/2021JG006441 [13] Kang XM, Hao YB, Cui XY, et al. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sen-sing, 2016, 8: 391 [14] Bond-Lamberty B, Thomson A, Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-U132 [15] Couwenberg J, Dommain R, Joosten H. Greenhouse gas fluxes from tropical peatlands in South-East Asia. Global Change Biology, 2010, 16: 1715-1732 [16] Vanselow-Algan M, Schmidt SR, Greven M, et al. High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences, 2015, 12: 4361-4371 [17] Cole JJ, Prairie YT, Caraco NF, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 2007, 10: 171-184 [18] Buffam I, Turner MG, Desai AR, et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology, 2011, 17: 1193-1211 [19] Benoy G, Cash K, McCauley E, et al. Carbon dynamics in lakes of the boreal forest under a changing climate. Environmental Reviews, 2007, 15: 175-189 [20] 叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能. 环境科学研究, 2015, 28(2): 171-181 [21] 崔保山, 韩祯, 李夏. 白洋淀沼泽化驱动机制与调控模式. 北京: 科学出版社, 2017 [22] Mitsch WJ, Gosselink JG. Wetlands. 5th Ed. Hoboken, NJ, USA: John Wiley & Sons, 2015 [23] Wilcox DA, Nichols SJ. The effects of water-level fluctuations on vegetation in a Lake Huron wetland. Wetlands, 2008, 28: 487-501 [24] Ye XC, Meng YK, Xu LG, et al. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China’s largest freshwater lake. Science of the Total Environment, 2019, 659: 302-313 [25] 赵慧颖, 乌力吉, 郝文俊. 气候变化对呼伦湖湿地及其周边地区生态环境演变的影响. 生态学报, 2008, 28(3): 1064-1071 [26] 谭三清, 康文星, 何介南, 等. 洞庭湖白沙洲4种植被系统与大气中碳素交换. 生态学报, 2010, 30(13): 3441-3448 [27] 余蓉, 项文化. 洞庭湖湿地3种植被类型生态系统的碳循环. 华中农业大学学报, 2016, 35(3): 66-71 [28] Pepin N, Bradley RS, Diaz HF. et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5: 424-430 [29] Niu B, He YT, Zhang XZ. et al. CO2 exchange in an alpine swamp meadow on the central Tibetan Plateau. Wetlands, 2017, 37: 525-543 [30] 张园, 袁凤辉, 王安志, 等. 2001—2018年长白山自然保护区生长季NDVI变化特征及其对气候变化的响应. 应用生态学报, 2020, 31(4): 1213-1222 [31] Bao K, Wang G, Jia L, et al. Anthropogenic impacts in the Changbai Mountain region of NE China over the last 150 years: Geochemical records of peat and altitude effects. Environmental Science and Pollution Research, 2019, 26: 7512-7524 [32] 刘玉芳, 李鸿凯, 赵红艳, 等. 多指标记录的1962—2008年长白山园池泥炭地地表湿度变化. 应用生态学报, 2021, 32(2): 477-485 [33] Mu C, Han S, Luo J, et al. Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain. Journal of Forestry Research, 2000, 11: 198 [34] 姜宁, 牟长城, 韩丽冬, 等, 采伐对大兴安岭非连续冻土区毛赤杨沼泽碳源/汇的影响. 北京林业大学学报, 2020, 42(3): 1-13 [35] Myhre G, Shindell D, Bréon FM, Anthropogenic and natural radiative forcing. Climate Change, 2013, 423: 658-740 [36] Wang B, Mu CC, Lu HC, et al. Ecosystem carbon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, Northeast China. Journal of Forestry Research, 2022, 33: 839-849 [37] Franchini AG, Erny I, Zeyer J. Spatial variability of methane emissions from Swiss alpine fens. Wetlands Ecology and Management, 2014, 22: 383-397 [38] 刘德燕, 丁维新. 天然湿地土壤产甲烷菌及其影响因子研究进展. 地理科学, 2011, 31(2): 136-142 [39] Whalen SC. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science, 2005, 22: 73-94 [40] Zhang WT, Kang XM, Kang EZ, et al. Soil water content, carbon, and nitrogen determine the abundances of methanogens, methanotrophs, and methane emission in the Zoige alpine wetland. Journal of Soils and Sediments, 2022, 22: 470-481 [41] Turetsky MR, Treat CC, Waldrop MP, et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research-Biogeosciences, 2008, 113: 10.1029/2007jg000496 [42] 刘岳坤, 庞军柱, 扆凡, 等. 秦岭火地塘林区不同海拔不同林型土壤CO2、CH4、N2O通量研究. 西北林学院学报, 2019, 34(1): 1-10 [43] 万忠梅. 水位对小叶章湿地CO2、CH4排放及土壤微生物活性的影响. 生态环境学报, 2013, 22(3): 465-468 [44] Gutenberg L, Krauss KW, Qu JJ, et al. Carbon dioxide emissions and methane flux from forested wetland soils of the Great Dismal Swamp, USA. Environmental Management, 2019, 64: 190-200 [45] Minke M, Augustin J, Burlo A, et al. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation. Biogeosciences, 2016, 13: 3945-3970 [46] Li KH, Gong YM, Song W, et al. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains. Chemosphere, 2012, 88: 140-143 [47] Zhang WT, Wang JZ, Hu ZY, et al. The primary dri-vers of greenhouse gas emissions along the water table gradient in the Zoige Alpine Peatland. Water Air and Soil Pollution, 2020, 231: 224 [48] 辛贵民, 赵清竹, 尹航, 等. 冻融交替对长白山不同林型土壤两种温室气体排放的影响. 生态学杂志, 2021, 40(3): 644-653 [49] Xiao DR, Zhang C, Tian K, et al. Development of alpine wetland vegetation and its effect on carbon sequestration after dam construction: A case study of Lashihai in the northwestern Yunnan plateau in China. Aquatic Botany, 2015, 126: 16-24 [50] 张志永, 向林, 万成炎, et al. 三峡水库消落区植物群落演变趋势及优势植物适应策略. 湖泊科学, 2023, 35(2): 553-563 [51] Zhang Q, Wang Z, Xia S, et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones. Science of the Total Environment, 2022, 822: 153512 [52] 李春波, 张园, 刘雅各, 等. 长白山自然保护区总初级生产力时空变化特征及其影响因素. 应用生态学报, 2023, 34(5): 1341-1348 [53] 王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量. 生态学报, 2019, 39(9): 3344-3354 [54] Clark MG, Humphreys E, Carey SK. The initial three years of carbon dioxide exchange between the atmosphere and a reclaimed oil sand wetland. Ecological Engineering, 2019, 135: 116-126 [55] Nilsson M, Sagerfors J, Buffam I, et al. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire: A significant sink after accounting for all C-fluxes. Global Change Biology, 2008, 14: 2317-2332 [56] Dusek J, Cizkova H, Czerny R, et al. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology, 2009, 149: 1524-1530 [57] Bonneville MC, Strachan IB, Humphreys ER, et al. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 2008, 148: 69-81 [58] Dalmagro HJ, de Arruda PHZ, Vourlitis GL, et al. Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest. Global Change Biology, 2019, 25: 1967-1981 [59] NOAA. National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022[EB/OL]. (2022-12-12) [2023-01-01]. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213 |