[1] Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53: 785-818 [2] Yuan W, Cai W, Xia J, et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 2014, 192: 108-120 [3] Dong J, Li L, Li Y, et al. Inter-comparisons of mean, trend and interannual variability of global terrestrial gross primary production retrieved from remote sensing approach. Science of the Total Environment, 2022, 822: 153343 [4] Yuan W, Cai W, Nguy-Robertson AL, et al. Uncertainty in simulating gross primary production of cropland ecosystem from satellite-based models. Agricultural and Forest Meteorology, 2015, 207: 48-57 [5] 常晓晴, 邢艳秋, 王馨慧, 等. 3PG碳生产模型在长白山阔叶红松林总初级生产力估算中的应用. 应用生态学报, 2019, 30(5): 1599-1607 [6] Xiao X, Zhang Q, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sen-sing of Environment, 2004, 91: 256-270 [7] Xiao X, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89: 519-534 [8] Xiao X, Zhang Q, Hollinger D, et al. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications, 2005, 15: 954-969 [9] Running SW, Nemani RR, Heinsch FA, et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 2004, 54: 547-560 [10] Kalfas JL, Xiao X, Vanegas DX, et al. Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agricultural and Forest Meteorology, 2011, 151: 1514-1528 [11] Xin F, Xiao X, Zhao B, et al. Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images. Remote Sensing of Environment, 2017, 190: 42-55 [12] Kang X, Wang Y, Chen H, et al. Modeling carbon fluxes using multi-temporal MODIS imagery and CO2 eddy flux tower data in Zoige slpine wetland, south-west China. Wetlands, 2014, 34: 603-618 [13] 刘雅各, 张茂亮, 关德新, 等. 长白山地区自然科学研究综述:1956—2018. 应用生态学报, 2019, 30(5): 1783-1796 [14] 陈智. 2000—2015年中国东北森林生产力和碳素利用率的时空变异. 应用生态学报, 2019, 30(5): 1625-1632 [15] Zuo Y, Wang Y, He L, et al. Modeling methane dynamics in three wetlands in Northeastern China by using the CLM-Microbe model. Ecosystem Health and Sustai-nability, 2022, 8: 2074895 [16] 石旭霞, 侯继华, 王冰雪, 等. 长白山阔叶红松林生态系统生产力与温度的关系. 北京林业大学学报, 2018, 40(11): 49-57 [17] 平晓莹, 马俊, 刘淼, 等. 基于VPM模型的长白山自然保护区植被总初级生产力动态变化. 应用生态学报, 2019, 30(5): 1589-1598 [18] 陈静清, 闫慧敏, 王绍强, 等. 中国陆地生态系统总初级生产力VPM遥感模型估算. 第四纪研究, 2014, 34(4): 732-742 [19] 贾文晓, 刘敏, 佘倩楠, 等. 基于FLUXNET观测数据与VPM模型的森林生态系统光合作用关键参数优化及验证. 应用生态学报, 2016, 27(4): 1095-1102 [20] 张娜, 于贵瑞, 于振良, 等. 基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析. 应用生态学报, 2003, 14(5): 659-664 [21] 冉有华, 马瀚青. 中国2000年1 km植物功能型分布图. 遥感技术与应用, 2016, 31(4): 827-832 [22] Abatzoglou JT, Dobrowski SZ, Parks SA, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 2018, 5: 1-12 [23] 冉有华, 李新. 中国植被功能型图(1 km). 北京: 国家青藏高原科学数据中心, 2019 [24] Ran YH, Li X, Lu L, et al. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. International Journal of Geographical Information Science, 2012, 26: 169-191 [25] 吴家兵, 关德新, 王安志, 等. 2003—2010年长白山阔叶红松林碳水通量观测数据集. 中国科学数据, 2021, 6(1): 27-36 [26] Zhang Y, Xiao X, Wu X, et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 2017, 4: 1-13 [27] Chandrasekar K, Sesha Sai MVR, Roy PS, et al. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. International Journal of Remote Sensing, 2010, 31: 3987-4005 [28] Sen PK. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 1968, 63: 1379-1389 [29] 袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798-7806 [30] 闫敏, 李增元, 田昕, 等. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应. 植物生态学报, 2016, 40(1): 1-12 [31] Wu JB, Xiao XM, Guan DX, et al. Estimation of the gross primary production of an old-growth temperate mixed forest using eddy covariance and remote sensing. International Journal of Remote Sensing, 2009, 30: 463-479 [32] 范秀华, 徐程扬. 长白山不同演替阶段森林群落分类结构形成机制. 北京林业大学学报, 2019, 41(3): 24-32 [33] 叶许春, 杨晓霞, 刘福红, 等. 长江流域陆地植被总初级生产力时空变化特征及其气候驱动因子. 生态学报, 2021, 41(17): 6949-6959 [34] 张月, 袁泉, 房磊, 等. 长白山自然保护区高海拔云冷杉林净初级生产力时空格局及其驱动因子. 生态学杂志, 2021, 40(11): 3483-3492 [35] 石旭霞, 宋沼鹏, 侯继华, 等. 中国东部森林最大总初级生产力的时空分布特征及其影响因子. 生态学杂志, 2019, 38(7): 1949-1961 [36] 张军辉, 于贵瑞, 韩士杰, 等. 长白山阔叶红松林CO2通量季节和年际变化特征及控制机制. 中国科学D辑: 地球科学, 2006, 36(A01): 60-69 [37] Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12: 1940-1953 [38] 何学兆, 周涛, 贾根锁, 等. 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟. 自然资源学报, 2011, 26(4): 619-634 [39] 刘雅各, 袁凤辉, 王安志, 等. 长白山生态功能区气候变化特征. 应用生态学报, 2019, 30(5): 1503-1512 |