[1] Dai AG. Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3: 52-58 [2] 倪深海, 顾颖, 彭岳津, 等. 近七十年中国干旱灾害时空格局及演变. 自然灾害学报, 2019, 28(6): 176-181 [3] Ignacio F, José P, Willem RV. Spatial and temporal global patterns of drought propagation. Frontiers in Environmental Science, 2022, 10: 140 [4] Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology, 2010, 391: 202-216 [5] Spinoni J, Naumann G, Carrao H, et al. World drought frequency, duration, and severity for 1951-2010. International Journal of Climatology, 2014, 34: 2792-2804 [6] Gao Y, Markkanen T, Thum T, et al. Assessing various drought indicators in representing summer drought in boreal forests in Finland. Hydrology and Earth System Sciences, 2016, 20: 175-191 [7] 粟晓玲, 姜田亮, 牛纪苹. 生态干旱的概念及研究进展. 水资源保护, 2021, 37(4): 15-21 [8] Zhang X, Hao Z, Singh VP, et al. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 2022, 838: 156021 [9] Crausbay SD, Ramirez AR, Carter SL, et al. Defining ecological drought for the twenty-first century. Bulletin of the American Meteorological Society, 2017, 98: 2543-2550 [10] Jiang TL, Su XL, Singh VP, et al. A novel index for ecological drought monitoring based on ecological water deficit. Ecological Indicators, 2021, 129: 1470-1160 [11] 杨强, 王婷婷, 陈昊, 等. 基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征. 农业工程学报,2015, 31(22): 191-198 [12] Payen S, Falconer S, Ledgard SF. Water scarcity footprint of dairy milk production in New Zealand: A comparison of methods and spatio-temporal resolution. Science of the Total Environment, 2018, 639: 504-515 [13] 王兆礼, 黄泽勤, 李军, 等. 基于SPEI和NDVI的中国流域尺度气象干旱及植被分布时空演变. 农业工程学报, 2016, 32(14): 177-186 [14] 杜灵通, 刘可, 胡悦, 等. 宁夏不同生态功能区2000—2010年生态干旱特征及驱动分析. 自然灾害学报, 2017, 26(5): 149-156 [15] 刘馨, 宋小宁, 冷佩, 等. 基于MODIS数据的黄河源区土壤干湿状况时空格局变化. 中国科学院大学学报, 2019, 36(2): 178-187 [16] Alencar A, Shimbo ZJ, Lenti F, et al. Mapping three decades of changes in the Brazilian savanna native vegetation using landsat data processed in the Google earth engine platform. Remote Sensing, 2020, 12: 924 [17] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7: eabc7447 [18] Wang Q, Moreno-Martínez Á, Muñoz-Marí J, et al. Estimation of vegetation traits with kernel NDVI. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 408-417 [19] 邱晓, 肖燚, 石磊, 等. 基于生态资产的内蒙古生态保护效益评估. 生态学报, 2022, 42(13): 5255-5263 [20] 张存厚, 张立, 吴英杰, 等. 内蒙古草原干旱灾害综合风险评估. 干旱区资源与环境, 2019, 33(7): 115-121 [21] 曲学斌, 杨钦宇, 王慧清, 等. 基于MCI的内蒙古气象干旱强度特征分析. 气象与环境科学, 2019, 42(4): 47-54 [22] 李云鹏, 司瑶冰, 刘朋涛, 等. 基于空间信息的内蒙古农业干旱监测研究. 干旱区资源与环境, 2011, 25(11): 125-131 [23] 白美兰, 李金田, 李喜仓, 等. 近50年内蒙古中东部地区春夏季干旱特征分析. 干旱区资源与环境, 2013, 27(5): 131-136 [24] 贾元童, 崔骁勇, 刘月仙, 等. 内蒙古自治区干旱脆弱性评价. 生态学报, 2020, 40(24): 9070-9082 [25] Luo M, Meng F, Sa C, et al. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau. Catena, 2021, 206: 105505 [26] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 2002, 79: 213-224 [27] 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究. 遥感学报, 2003, 7(5): 420-427 [28] 吴孟泉, 崔伟宏, 李景刚. 温度植被干旱指数(TVDI)在复杂山区干旱监测的应用研究. 干旱区地理, 2007, 30(1): 30-35 [29] Adler J, Parmryd I. Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A, 2010, 77: 733-742 [30] Tomé AR, Miranda PMA. Piecewise linear fitting and trend changing points of climate parameters. Geophysical Research Letters, 2004, 31: L02207 [31] Liu Z, Wang H, Li N, et al. Spatial and temporal chara-cteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018. Sustainability, 2020, 12: 2198 [32] Wang F, Shao W, Yu H, et al. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science, 2020, 8: 14 [33] 谢平, 陈广才, 雷红富. 基于Hurst系数的水文变异分析方法. 应用基础与工程科学学报, 2009, 17(1): 32-39 [34] Hanson RL. Evapotranspiration and droughts// Paulson RW, Chase EB, Roberts RS, eds. National Water Summary: Hydrologic Events and Water Supply and Use. Washington DC: US Geological Survey, 1991: 99-104 [35] Zhou P, Zhao D, Liu X, et al. Dynamic change of vegetation index and its influencing factors in Alxa league in the arid area. Frontiers in Ecology and Evolution, 2022, 10: 922739 [36] Hu Y, Xiang W, Scháfer KV, et al. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828: 154517 [37] Badgley G, Field BC, Berry AJ. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 2017, 3: e1602244 [38] 汪士为. 近20年内蒙古干旱时空动态及其对气候、蒸散发变化的响应. 水土保持研究, 2022, 29(4): 231-239 [39] 马梓策, 孙鹏, 姚蕊, 等. 内蒙古地区干旱时空变化特征及其对植被的影响. 水土保持学报, 2022, 36(6): 231-240 [40] 田丰, 杨建华, 刘雷震, 等. 地理学视角的干旱传播概念、特征与影响因素研究进展. 地理科学进展, 2022, 41(1): 173-184 [41] 程伟, 辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析. 中国农业科学, 2020, 53(13): 2728-2742 [42] 康尧, 郭恩亮, 王永芳, 等. 温度植被干旱指数在蒙古高原干旱监测中的应用. 应用生态学报, 2021, 32(7): 2534-2540 [43] Li Y, Tong S, Bao Y, et al. Prediction of droughts in the Mongolian plateau based on the CMIP5 model. Water, 2020, 12: 2774 |