[1] Cotrufo MF, Soong JL, Horton AJ, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779 [2] Handa IT, Aerts R, Berendse F, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509: 218-221 [3] Bani A, Pioli S, Ventura M, et al. The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 2018, 126: 75-84 [4] 赵俊峰, 肖礼, 安韶山, 等. 永利煤矿复垦区植物叶片和枯落物生态化学计量学特征. 生态学报, 2017, 37(9): 3036-3045 [5] Tao JP, Zuo J, He Z, et al. Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species. Functional Ecology, 2019, 33: 1798-1810 [6] Chen B, Chen LY, Jiang L, et al. C:N:P stoichiometry of plant, litter and soil along an elevational gradient in subtropical forests of China. Forests, 2022, 13: 372-386 [7] Yuan ZY, Chen HYH. Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 2009, 18: 532-542 [8] 唐仕姗, 杨万勤, 王海鹏, 等. 中国森林凋落叶氮、磷化学计量特征及控制因素. 应用与环境生物学报, 2015, 21(2): 316-322 [9] 邵静, 陈晓萍, 李锦隆, 等. 江西阳际峰30种阔叶树叶片氮磷含量及再吸收效率. 应用生态学报, 2021, 32(4): 1193-1200 [10] 秦立厚, 刘琪璟, 孙震, 等. 长白山阔叶红松林主要树种凋落叶分解速率及其与叶性状的关系. 生态学报, 2022, 42(14): 5894-5905 [11] Ge JL, Xie ZQ. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecology, 2017, 218: 1063-1076 [12] Hattenschwiler S, Aeschlimann B, Couteaux MM, et al. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 2008, 179: 165-175 [13] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713 [14] 王雪, 闫晓俊, 范爱连, 等. 亚热带常绿阔叶林89种木本植物一级根碳氮浓度变异规律. 热带亚热带植物学报, 2021, 29(5): 474-482 [15] 许格希, 史作民, 刘顺, 等. 尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式. 生态学报, 2017, 37(17): 5691-5703 [16] Metali F, Salim KA, Burslem DFRP. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytologist, 2012, 193: 637-649 [17] Sardans J, Janssens IA, Alonso R, et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography, 2015, 24: 240-255 [18] Sardans J, Alonso R, Carnicer J, et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 18: 52-69 [19] Yang XJ, Huang ZY, Zhang KL, et al. C:N:P stoichio-metry of Artemisia species and close relatives across northern China: Unravelling effects of climate, soil and taxonomy. Journal of Ecology, 2015, 103: 1020-1031 [20] Li AG, Fan YX, Chen SL, et al. Soil warming did not enhance leaf litter decomposition in two subtropical forests. Soil Biology and Biochemistry, 2022, 170: 108716 [21] 游章湉. 三明格氏栲自然保护区常绿阔叶林植物区系及叶功能性状研究. 硕士论文. 福州: 福建师范大学, 2017 [22] 庞梅. 古田山亚热带常绿阔叶林叶片凋落物分解与凋落物性状关系研究. 硕士论文. 重庆: 重庆大学, 2018 [23] Zanne AE, Tank DC, Cornwell WK, et al. Corrigendum: Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506: 89-92 [24] 王雪, 陈光水, 闫晓俊, 等. 亚热带常绿阔叶林89种木本植物一级根直径的变异. 植物生态学报, 2019, 43(11): 969-978 [25] Qi JH, Fan ZX, Fu PL, et al. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: Carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiology, 2021, 41: 12-23 [26] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Procee-dings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006 [27] Yuan ZY, Chen HYH. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 2009, 18: 11-18 [28] Tomlinson KW, Poorter L, Sterck FJ, et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. Journal of Ecology, 2013, 101: 430-440 [29] Tomlinson KW, Poorter L, Bongers F, et al. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 2014, 114: 315-324 [30] Jia YY, Gu DL, Wu CW, et al. Nitrogen deposition slows down the litter decomposition induced by soil macrofauna in the soil of subtropical forests in China. Ecological Research, 2019, 34: 360-369 [31] Tomlinson KW, van Langevelde F, Ward D, et al. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage. Annals of Botany, 2013, 112: 575-587 [32] Bai KD, He CX, Wan XC, et al. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB Plants, 2015, 7: 10.1093 [33] 张云舒. 天童亚热带常绿阔叶林主要物种叶生活史对策研究. 博士论文. 南京: 南京大学, 2017 [34] 姜沛沛, 曹扬, 陈云明. 陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征. 应用生态学报, 2016, 27(2): 365-372 [35] Zhu CC, Zhang MH, Chen YF, et al. Plant-caterpillar food web: Integrating leaf stoichiometry and phylogeny. Ecological Entomology, 2021, 46: 1026-1035 [36] Bai KD, Lv SH, Ning SJ, et al. Leaf nutrient concentrations associated with phylogeny, leaf habit and soil chemistry in tropical karst seasonal rainforest tree species. Plant and Soil, 2019, 434: 305-326 [37] Kamilar JM, Cooper N. Phylogenetic signal in primate behavior, ecology and life history. Philosophical Tran-sactions of the Royal Society of London, 2013, 368: 0341 |