应用生态学报 ›› 2024, Vol. 35 ›› Issue (4): 985-996.doi: 10.13287/j.1001-9332.202404.020
张君1,2, 陈洪松1,2*, 聂云鹏1,2, 付智勇1,2, 连晋姣1,2, 王发1,2, 罗紫东1,2, 王克林1,2
收稿日期:
2023-09-14
接受日期:
2024-02-20
出版日期:
2024-04-18
发布日期:
2024-10-18
通讯作者:
* E-mail: hbchs@isa.ac.cn
作者简介:
张君, 男, 1990年生, 博士。主要从事喀斯特关键带生态水文过程研究。E-mail: zhangjun@mails.ccnu.edu.cn
基金资助:
ZHANG Jun1,2, CHEN Hongsong1,2*, NIE Yunpeng1,2, FU Zhiyong1,2, LIAN Jinjiao1,2, WANG Fa1,2, LUO Zidong1,2, WANG Kelin1,2
Received:
2023-09-14
Accepted:
2024-02-20
Online:
2024-04-18
Published:
2024-10-18
摘要: 中国西南地区是世界上喀斯特出露面积最大的区域,也是长江和珠江上游重要的生态安全屏障区。区别于非喀斯特关键带,由溶蚀性孔隙网络结构交织而成的表层岩溶带是喀斯特关键带的核心区,水则是参与和联系关键带内部物质循环、能量流动过程最活跃的因子。本文从关键带结构刻画、土壤-表层岩溶带系统水文过程以及模型模拟3方面回顾和总结了西南喀斯特地区开展的相关研究以及存在的问题,并对潜在的研究热点进行了展望。多尺度、多方法综合观测以及多学科交叉是开展系列研究的主要途径,精准刻画植被-土壤-表层岩溶带耦合系统的生态水文过程是未来研究的主要趋势和重点。本文旨在为深化喀斯特关键带水文过程研究和区域水文水资源管理提供科学参考。
张君, 陈洪松, 聂云鹏, 付智勇, 连晋姣, 王发, 罗紫东, 王克林. 西南喀斯特关键带结构及其水文过程研究进展[J]. 应用生态学报, 2024, 35(4): 985-996.
ZHANG Jun, CHEN Hongsong, NIE Yunpeng, FU Zhiyong, LIAN Jinjiao, WANG Fa, LUO Zidong, WANG Kelin. Research progress on structure and hydrological processes in the karst critical zone of southwest China[J]. Chinese Journal of Applied Ecology, 2024, 35(4): 985-996.
[1] National Research Council. Basic Research Opportunities in the Earth Sciences. Washington, DC: The National Academies Press, 2001 [2] Brantley SL, White TS, White AF, et al. Frontiers in Exploration of the Critical Zone, An NSF-Sponsored Workshop. Washington, DC: National Science Foundation, 2006 [3] Goddéris Y, Brantley SL. Earthcasting the future critical zone. Elementa, 2014, 1: 000019 [4] Rempe DM, Dietrich WE. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 2664-2669 [5] Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 2014, 52: 218-242 [6] 骆占斌, 樊军, 邵明安. 地球关键带基岩风化层生态水文研究进展. 科学通报, 2022, 67(27): 3311-3323 [7] Wang KL, Zhang CH, Chen HS, et al. Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecology, 2019, 34: 2743-2763 [8] Jiang ZC, Lian YQ, Qin XQ. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 2014, 132: 1-12 [9] 陈洪松, 杨静, 傅伟, 等. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征. 农业工程学报, 2012, 28(16): 121-126 [10] Fu ZY, Chen HS, Zhang W, et al. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study. Geomorphology, 2015, 250: 1-14 [11] Bakalowicz M. Epikarst// White WB, Culver DC, Pipan T, eds. Encyclopedia of Caves. New York, USA: Academic Press, 2012: 284-288 [12] Williams P. The role of the epikarst in karst and cave hydrogeology: A review. International Journal of Speleo-logy, 2008, 37: 1-10 [13] Liu MX, Xu XL, Sun AY, et al. Why do karst catchments exhibit higher sensitivity to climate change? Evidence from a modified Budyko model. Advances in Water Resources, 2018, 122: 238-250 [14] Anderson SP, Blum S, Brantley SL, et al. Proposed initiative would study Earth's weathering engine. EOS Transactions, 2004, 85: 265-269 [15] Brooks PD, Chorover J, Fan Y, et al. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research, 2015, 51: 6973-6987 [16] Welch LA, Allen DM. Hydraulic conductivity characte-ristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeology Journal, 2014, 22: 1003-1026 [17] Riebe CS, Hahm WJ, Brantley SL. Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 2017, 42: 128-156 [18] Anderson SP, Dieitrich WE, Montgomery DR, et al. Subsurface flow paths in a steep, unchanneled catchment. Water Resource Research, 1997, 33: 2637-2653 [19] Banks EW, Simmons CT, Love AJ, et al. Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: A conceptual model (Australia). Hydrogeology Journal, 2009, 17: 1969-1989 [20] Harr RD. Water flux in soil and subsoil on a steep forested slope. Journal of Hydrology, 1977, 33: 37-58 [21] Graham R, Anderson MA, Sternberg PD, et al. Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Science Society of America Journal, 1997, 61: 516-522 [22] 张信宝, 刘再华, 王世杰, 等. 锥峰和塔峰溶丘地貌的表层喀斯特带径流溶蚀形成机制. 山地学报, 2011, 29(5): 529-533 [23] 张君, 付智勇, 陈洪松, 等. 西南喀斯特白云岩坡地土壤-表层岩溶带结构及水文特征. 应用生态学报, 2021, 32(6): 2107-2118 [24] Ford D, Williams P. Karst Hydrogeology and Geomorphology. Hoboken, NJ, USA: Wiley, 2015 [25] 石朋, 侯爱冰, 马欣欣, 等. 西南喀斯特流域水循环研究进展. 水利水电科技进展, 2012, 32(1): 69-73 [26] Green SM, Dungait JAJ, Tu CL, et al. Soil functions and ecosystem services research in the Chinese karst critical zone. Chemical Geology, 2019, 527: 119107 [27] Mangin A. The dynamics of transfers in karstic aquifers. Proceedings of the 6th International Congress of Speleo-logy, Olomouc, III, Canada, 1973: 157-162 [28] Yan JH, Wang YP, Zhou GY, et al. Reply to comment by François Bourges et al. on “Carbon uptake by karsts in the Houzhai Basin, southwest China”. Journal of Geophysical Research, 2012, 117: G0007 [29] 蒋忠诚. 中国南方表层岩溶带的特征及其形成机理. 热带地理, 1998, 18(4): 322-326 [30] 凡非得, 王克林, 熊鹰, 等. 西南喀斯特区域水土流失敏感性评价及其空间分异特征. 生态学报, 2011, 31(21): 6353-6362 [31] 刘再华. 表层岩溶带的水温特征及其与下部包气带的对比: 以桂林岩溶水文地质试验场为例. 中国岩溶, 1991, 12(4): 277-282 [32] 章程, 袁道先, 曹建华, 等. 典型表层岩溶泉短时间尺度动态变化规律研究. 地球学报, 2004, 25(4): 467-471 [33] 蒋忠诚, 袁道先. 表层岩溶带的岩溶动力学特征及其环境和资源意义. 地球学报, 1999, 20(3): 302-308 [34] 姜光辉, 郭芳, 张美良, 等. 万华岩表层岩溶带岩溶动力系统的特点研究. 中国岩溶, 2002, 21(3): 173-177 [35] 劳文科, 李兆林, 罗伟权, 等. 洛塔地区表层岩溶带基本特征及其类型划分. 中国岩溶, 2002, 21(1): 30-35 [36] Zhang C, Yuan DX, Cao JH. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China. Environmental Earth Sciences, 2005, 47: 615-619 [37] Liu ZH, Li Q, Sun HL, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects. Journal of Hydrology, 2007, 337: 207-223 [38] 张志才, 陈喜, 程勤波, 等. 喀斯特山体表层岩溶带水文地质特征分析: 以陈旗小流域为例. 地球与环境, 2011, 39(1): 19-26 [39] Yang R, Liu ZH, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China. Journal of Hydrology, 2012, 468: 151-158 [40] Zhang C, Yan J, Pei JG, et al. Hydrochemical variations of epikarst springs in vertical climate zones: A case study in Jinfo Mountain National Nature Reserve of China. Environmental Earth Sciences, 2011, 63: 375-381 [41] Pu JB, Yuan DX, Zhao HP, et al. Hydrochemical and PCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects. Environmental Earth Sciences, 2014, 71: 4039-4049 [42] 周宁, 吴慈华, 刘波. 鄂西南表层岩溶带个体形态特征及分布规律. 资源环境与工程, 2008, 22(5): 519-523 [43] 罗小杰, 张三定, 沈建. 武汉地区表层岩溶带发育特征. 中国岩溶, 2018, 37(5): 650-658 [44] Ma JF, Li XQ, Liu F, et al. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai-Xizang Plateau: A case study of Genie Mountain. Environmental Earth Sciences, 2022, 81: 291 [45] Fu ZY, Chen HS, Xu QX, et al. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments. Hydrological Processes, 2016, 30: 795-811 [46] Li Y, Liu ZQ, Liu GH, et al. Dynamic variations in soil moisture in an epikarst fissure in the karst rocky desertification area. Journal of Hydrology, 2020, 591: 125587 [47] 何师意, 冉景丞, 袁道先, 等. 不同岩溶环境的水文和生态效应研究. 地球学报, 2001, 22(3): 265-270 [48] Huang YQ, Zhao P, Zhang ZF, et al. Transpiration of Cyclobalanopsis glauca (syn. Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season. Ecological Research, 2009, 24: 791-801 [49] Huang YQ, Li XK, Zhang ZF, et al. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy sto-matal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain. Journal of Hydrology, 2011, 402: 135-143 [50] Deng Y, Kuo YM, Jiang ZC, et al. Using stable isotopes to quantify water uptake by Cyclobalanopsis glauca in typical clusters of karst peaks in China. Environmental Earth Sciences, 2015, 74: 1039-1046 [51] Yan YJ, Dai QH, Yang YQ, et al. Epikarst shallow fissure soil systems are key to eliminating karst drought limitations in the karst rocky desertification area of SW China. Ecohydrology, 2022, 15: e2372 [52] Deng Y, Jiang ZC, Qin XM. Water source partitioning among trees growing on carbonate rock in a subtropical region of Guangxi, China. Environmental Earth Sciences, 2012, 66: 635-640 [53] Ding YL, Nie YP, Chen HS, et al. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytologist, 2020, 229: 1339-1353 [54] Luo Z, Nie YP, Ding YL, et al. Replenishment and mean residence time of root-zone water for woody plants growing on rocky outcrops in a subtropical karst critical zone. Journal of Hydrology, 2021, 603: 127-136 [55] Fan B, Liu XB, Zhu Q, et al. Exploring the interplay between infiltration dynamics and critical zone structures with multiscale geophysical imaging: A review. Geoderma, 2020, 374: 114431 [56] 严冬春, 文安邦, 鲍玉海, 等. 黔中高原岩溶丘陵坡地土壤中的137Cs分布. 地球与环境, 2008, 36(4): 342-347 [57] 周运超, 王世杰, 卢红梅. 喀斯特石漠化过程中土壤的空间分布. 地球与环境, 2010, 38(1): 1-6 [58] 夏银行, 黎蕾, 陈香碧, 等. 基于探地雷达技术估算岩溶峰丛洼地不同坡位土壤有机碳密度的方法. 农业环境科学学报, 2015, 34(5): 920-927 [59] Cheng QB, Chen X, Tao M, et al. Characterization of karst structures using quasi-3D electrical resistivity tomography. Environmental Earth Sciences, 2019, 78: 285 [60] 张君, 陈洪松, 付智勇, 等. 西南喀斯特小流域关键带含水介质分布特征. 土壤学报, 2023, 60(4): 969-982 [61] Wang F, Zhang J, Lian JJ, et al. Spatial variability of epikarst thickness and its controlling factors in a dolomite catchment. Geoderma, 2022, 428: 116213 [62] 彭韬, 周长生, 宁茂岐, 等. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究, 第四纪研究, 2017, 37(6): 1262-1270 [63] 高强山, 彭韬, 付磊, 等. 探地雷达技术对表层岩溶带典型剖面组构刻画与界面识别. 中国岩溶, 2019, 38(5): 759-765 [64] Cheng Q, Tao M, Chen X, et al. Evaluation of electrical resistivity tomography (ERT) for mapping the soil-rock interface in karstic environments. Environmental Earth Sciences, 2019, 78: 439 [65] Gao QS, Wang SJ, Peng T, et al. Evaluating the structure characteristics of epikarst at a typical peak cluster depression in Guizhou plateau area using ground penetrating radar attributes. Geomorphology, 2020, 364: 107015 [66] 王发, 聂云鹏, 陈洪松, 等. 典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征. 地质科技通报, 2024, 43(1): 123-131 [67] Chen X, Zhang ZZ, Soulsby C, et al. Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrological Processes, 2018, 32: 2932-2946 [68] Chen HS, Liu JW, Wang KL, et al. Spatial distribution of rock fragments on steep hillslopes in karst region of northwest Guangxi, China. Catena, 2011, 84: 21-28 [69] 张川, 陈洪松, 张伟, 等. 喀斯特坡面表层土壤含水量、容重和饱和导水率的空间变异特征. 应用生态学报, 2014, 25(6): 1585-1591 [70] 付同刚, 陈洪松, 王克林. 喀斯特小流域土壤饱和导水率垂直分布特征. 土壤学报, 2015, 52(3): 538-546 [71] 王发, 付智勇, 陈洪松, 等. 喀斯特洼地退耕和耕作土壤优先流特征. 水土保持学报, 2016, 30(1): 111-116 [72] Wang F, Chen HS, Lian JJ, et al. Preferential flow in different soil architectures of a small karst catchment. Vadose Zone Journal, 2018, 17: 180107 [73] 徐勤学, 李春茂, 陈洪松, 等. 喀斯特峰丛坡地灌木林地与梯田旱地土壤水分入渗特征. 农业工程学报, 2018, 34(8): 124-131 [74] Zhang ZC, Chen X, Chen XH, et al. Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses. Hydrogeology Journal, 2013, 21: 1619-1631 [75] 张志才, 陈喜, 刘金涛, 等. 喀斯特山体地形对表层岩溶带发育的影响: 以陈旗小流域为例. 地球与环境, 2012, 40(2): 137-143 [76] 张信宝, 王世杰, 贺秀斌, 等. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失. 地球与环境, 2007, 35(3): 202-206 [77] 符裕红, 喻理飞, 黄宗胜, 等. 典型岩溶石漠化区根系生境及其类型研究. 中国水土保持科学, 2012, 10(2): 66-72 [78] Yan YJ, Dai QH, Li J, et al. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena, 2019, 174: 48-58 [79] Yang J, Nie YP, Chen HS, et al. Hydraulic properties of karst fractures filled with soils and regolith materials: Implication for their ecohydrological functions. Geoderma, 2016, 276: 93-101 [80] Yan YJ, Dai QH, Yuan YF, et al. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma, 2018, 330: 30-40 [81] Jiang GH, Guo F, Wu JC, et al. Threshold value of epikarst runoff in forest mountain area. Environmental Earth Sciences, 2008, 55: 87-93 [82] Wang S, Fu ZY, Chen HS, et al. Mechanisms of surface and subsurface runoff generation in subtropical soil epikarst systems: Implications of rainfall simulation experiments on karst slope. Journal of Hydrology, 2020, 580: 124370 [83] Tromp-van Meerveld HJ, McDonnell JJ. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resources Research, 2006, 42: w02410 [84] Wang S, Yan Y, Fu ZY, et al. Rainfall-runoff characteristics and their threshold behaviors on a karst hillslope in a peak-cluster depression region. Journal of Hydrology, 2022, 605: 127370 [85] Zhang J, Wang S, Fu ZY, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in southwest China, Journal of Hydrology, 2022, 609: 127779 [86] Dunne T, Black RD. An experimental investigation of runoff production in permeable soils. Water Resources Research, 1970, 6: 478-490 [87] Freeze RA. Mathematical Models of Hillslope Hydrology. New York: John Wiley & Sons, 1978: 177-225 [88] 彭韬, 王世杰, 张信宝, 等. 喀斯特坡地地表径流系数监测初报. 地球与环境, 2008, 36(2): 125-128 [89] Juhlke TR, Geldern V, Barth R, et al. Temporal offset between precipitation and water uptake of Mediterranean pine trees varies with elevation and season. Science of the Total Environment, 2020, 755: 142539 [90] 张蓓蓓, 徐庆, 高德强, 等. 中国亚热带大气降水氢氧稳定同位素特征及其影响因素. 陆地生态系统与保护学报, 2022, 2(4): 13-20 [91] 胡可, 陈洪松, 聂云鹏, 等. 桂西北喀斯特峰丛洼地降水氢氧稳定同位素的季节变化特征. 农业工程学报, 2013, 29(5): 53-62 [92] 朱晓燕, 张美良, 吴夏, 等. 桂林地区大气降水(大雨、暴雨)的δ18O特征与水汽来源的关系. 中国岩溶, 2017, 36(2): 139-161 [93] Zhou JL, Li TY. A tentative study of the relationship between annual δ18O & δD variations of precipitation and atmospheric circulations: A case from Southwest China. Quaternary International, 2018, 479: 117-127 [94] 王升, 黄玉清, 丁亚丽, 等. 百色干热河谷地区降雨氢氧稳定同位素特征及芒果树水分来源研究. 热带作物学报, 2023, 44(1): 122-132 [95] Guo XJ, Gong XP, Shi JS, et al. Temporal variations and evaporation control effect of the stable isotope composition of precipitation in the subtropical monsoon climate region, Southwest China. Journal of Hydrology, 2021, 599: 126279 [96] Zhang J, Chen HS, Nie YP, et al. Temporal variations of precipitation driven by local meteorological parameters in southwest China: Insights from 9 years of conti-nuous hydro-meteorological and isotope observations. Journal of Hydrology, 2023, 46: 101345 [97] Chen HS, Hu K, Nie YP, et al. Analysis of soil water movement inside a footslope and a depression in a karst catchment, Southwest China. Scientific Reports, 2017, 7: 2544 [98] 张艳青, 张志才, 陈喜, 等. 西南喀斯特流域岩溶水氢氧同位素时空分布特征及水文意义: 以后寨河流域为例. 地球与环境, 2022, 50(1): 25-33 [99] Liu W, Wang SJ, Luo WJ, et al. Characteristics of soil water movement in a grass slope in a karst peak-cluster region, China. Hydrological Processes, 2017, 31: 1331-1348 [100] Guo XJ, Jiang GH, Gong XP, et al. Recharge processes on typical karst slopes implied by isotopic and hydrochemical indexes in Xiaoyan Cave, Guilin, China. Journal of Hydrology, 2015, 530: 612-622 [101] Guo YL, Wu Q, Jiang GH, et al. Dynamic variation characteristics of water chemistries and isotopes in a typical karst aquiferous system and their implications for the local karst water cycle, Southwest China. Carbonates and Evaporites, 2019, 34: 987-1001 [102] Zhang ZC, Chen X, Cheng QB, et al. Using StorAge Selection (SAS) functions to understand flow paths and age distributions in contrasting karst groundwater systems. Journal of Hydrology, 2021, 602: 126785 [103] Zhang J, Chen HS, Fu ZY, et al. Towards hydrological connectivity in the karst hillslope critical zone: Insight from using water isotope signals. Journal of Hydrology, 2023, 617: 128926 [104] 康志强. 喀斯特表层岩溶带原生森林的水文效应研究: 以贵州省茂兰国家自然保护区为例. 水土保持通报, 2012, 32(6): 48-50 [105] 朱晓峰, 陈洪松, 付智勇, 等. 喀斯特灌丛坡地土壤-表层岩溶带产流及氮素流失特征. 应用生态学报, 2017, 28(7): 2197-2206 [106] 陈雪莲, 陈喜, 张志才, 等. 基于稳定同位素和水化学成分的西南喀斯特流域径流划分. 地球与环境, 2013, 41(2): 104-110 [107] 刘春, 杨静, 聂云鹏, 等. 典型喀斯特小流域水文水化学过程对旱季暴雨的响应. 地球与环境, 2015, 43(4): 386-394 [108] Hu K, Chen HS, Nie YP, et al. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China. Scientific Reports, 2015, 5: 10215 [109] Zheng W, Jiang J, Tao K. A method based on musical-staff-inspired signal processing model for measuring rock moisture content. Measurement, 2018, 125: 577-585 [110] Chang Y, Wu JC, Jiang GH, et al. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model. Journal of Hydrology, 2017, 548: 75-87 [111] Zhang ZC, Chen X, Soulsby C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes, 2017, 31: 3421-3436 [112] 许波刘, 董增川, 洪娴. 集总式喀斯特水文模型构建及其应用. 水资源保护, 2017, 33(2): 37-42 [113] Chang Y, Wu JC, Jiang GH, et al. Modelling spring discharge and solute transport in conduits by coupling CFPv2 to an epikarst reservoir for a karst aquifer. Journal of Hydrology, 2019, 569: 587-599 [114] Wang Y, Brubaker K. Implementing a nonlinear groundwater module in the soil and water assessment tool (SWAT). Hydrological Processes, 2014, 28: 3388-3403 [115] 梁桂星, 覃小群, 崔亚莉, 等. 分布式水文模型在岩溶地区的改进与应用研究. 水文地质工程地质, 2020, 47(2): 60-67 [116] 张珂, 周佳奇, 张企诺. 栅格岩溶分布式水文模型. 水资源保护, 2022, 38(1): 43-51 [117] Sprenger M, Herbstritt B, Weiler M. Established me-thods and new opportunities for pore water stable isotope analysis. Hydrological Processes, 2015, 29: 5174-5192 [118] Ries F, Lange J, Schmidt S, et al. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrology and Earth System Sciences, 2015, 19: 1439-1456 [119] Dasgupta S. Infiltration under Two Contrasting Hydrologic Scenarios in Texas. Master Thesis. College Station, TX, USA: Texas A&M University, 2005 |
[1] | 雷自然, 王欣, 余新晓, 贾国栋. 庐山针阔混交林优势种水分利用来源季节变化及对降水的响应 [J]. 应用生态学报, 2024, 35(4): 886-896. |
[2] | 韦昊延, 陆彦玮, 李敏, 李培月, 程文青, 司炳成. 渭河流域秋雨异常氢氧稳定同位素特征及其水汽来源 [J]. 应用生态学报, 2023, 34(7): 1737-1744. |
[3] | 吴应明, 韩璐, 刘柯言, 胡旭, 付照琦, 陈立欣. 晋西黄土区不同土壤水分条件下刺槐和侧柏人工林的水分利用来源 [J]. 应用生态学报, 2023, 34(3): 588-596. |
[4] | 古丽哈娜提·波拉提别克, 常顺利, 巴贺贾依娜尔·铁木尔别克, 张毓涛. 天山林区雪岭云杉和异果小檗夏季水分来源 [J]. 应用生态学报, 2022, 33(7): 1893-1900. |
[5] | 李佳奇, 黄亚楠, 石培君, 李志. 陕北黄土区大气降水同位素特征及其水汽来源 [J]. 应用生态学报, 2022, 33(6): 1459-1465. |
[6] | 刘澄静, 角媛梅, 徐秋娥, 杨艳芬, 丁银平, 刘志林. 哈尼梯田景观格局对地表水δ18O海拔效应的影响 [J]. 应用生态学报, 2022, 33(4): 1083-1090. |
[7] | 张君, 付智勇, 陈洪松, 连晋姣, 覃常. 西南喀斯特白云岩坡地土壤-表层岩溶带结构及水文特征 [J]. 应用生态学报, 2021, 32(6): 2107-2118. |
[8] | 李雨芊, 孟玉川, 宋泓苇, 杜成鸿, 向淇云. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征 [J]. 应用生态学报, 2021, 32(6): 1928-1934. |
[9] | 房丽晶, 高瑞忠, 贾德彬, 于瑞宏, 刘心宇, 刘廷玺, 王喜喜. 内蒙古草原巴拉格尔河流域不同水体转化特征及环境驱动因素 [J]. 应用生态学报, 2021, 32(3): 860-868. |
[10] | 李龙, 唐常源, 曹英杰. 亚热带地区常绿阔叶林SPAC系统水分的氢氧稳定同位素特征 [J]. 应用生态学报, 2020, 31(9): 2875-2884. |
[11] | 苏鹏燕, 张明军, 王圣杰, 邱雪, 王家鑫, 杜勤勤, 郭蓉, 车存伟. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源 [J]. 应用生态学报, 2020, 31(6): 1835-1843. |
[12] | 姬王佳, 黄亚楠, 李冰冰, 李志. 陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征 [J]. 应用生态学报, 2019, 30(12): 4143-4149. |
[13] | 吴红宝, 赵强, 秦晓波, 高清竹, 吕成文. 脱甲河氢氧同位素组分时空分布特征及其影响因素 [J]. 应用生态学报, 2018, 29(5): 1461-1469. |
[14] | 聂云鹏, 陈洪松, 王克林, Schwinning Susanne. 采用稳定同位素技术判定喀斯特地区植物水分来源的挑战与可能应对方案 [J]. 应用生态学报, 2017, 28(7): 2361-2368. |
[15] | 张兴, 王克林, 付智勇, 陈洪松, 张伟, 史志华. 桂西北白云岩坡地典型土体构型石灰土水文特征 [J]. 应用生态学报, 2017, 28(7): 2186-2196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||