[1] Li Q, Zhao MM, Wang N, et al. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality. Plant Physiology and Biochemistry, 2020, 153: 106-118 [2] Ehleringer JR, Phillips SL, Schuster WSF, et al. Differential utilization of summer rains by desert plants. Oecologia, 1991, 88: 430-434 [3] Zhu WR, Li WH, Shi PL, et al. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, Northern China. Sustainability, 2021, 13: 807 [4] Nie YP, Chen HS, Ding YL, et al. Qualitative identification of hydrologically different water sources used by plants in rock-dominated environments. Journal of Hydrology, 2019, 573: 386-394 [5] 陈定帅, 董正武, 高磊, 等. 不同降水条件下科尔沁沙地小叶锦鸡儿和盐蒿的水分利用动态. 植物生态学报, 2017, 41(12): 1262-1272 [6] Zhao YL, Wang YQ, He MN, et al. Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region. Forest Ecology and Management, 2020, 457: 117727 [7] 王欣, 贾国栋, 邓文平, 等. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 2021, 32(6): 1943-1950 [8] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应. 林业科学, 2018, 54(7): 16-23 [9] 周雅聃, 陈世苹, 宋维民, 等. 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 2011, 35(8): 789-800 [10] Liu ZQ, Yu XX, Jia GD, et al. Contrasting water sources of evergreen and deciduous tree species in rocky mountain area of Beijing, China. Catena, 2017, 150: 108-115 [11] 刘子赫, 贾国栋, 刘自强, 等. 北京山区侧柏用水来源随水分条件变化的多时间尺度. 林业科学, 2022, 58(3): 40-47 [12] 邹巧云, 陈洪松, 马星宇, 等. 基于控水试验的喀斯特出露基岩生境植物水分来源分析. 应用生态学报, 2019, 30(3): 759-767 [13] 何秋月, 闫美杰, 张建国, 等. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应. 植物生态学报, 2018, 42(4): 466-474 [14] Beier C, Beierkuhnlein C, Wohlgemuth T, et al. Precipitation manipulation experiments: Challenges and recommendations for the future. Ecology Letters, 2012, 15: 899-911 [15] 赵丹阳, 毕华兴, 侯贵荣, 等. 晋西黄土区典型林地土壤水分变化特征. 水土保持学报, 2021, 35(1): 181-187 [16] Zhang ZD, Huang MB, Zhang YK. Vertical distribution of fine root area in relation to stand age and environmental factors in black locust (Robinia pseudoacacia L.) forests of the Chinese Loess Plateau. Canadian Journal of Forest Research, 2018, 48: 1148-1158 [17] Landwehr JM, Coplen TB. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. International Conference on Isotopes in Environmental Studies, Vienna, 2006: 132-135 [18] 李亚飞, 于静洁, 陆凯, 等. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 2017, 41(5): 519-528 [19] Zhang Y, Zhang M, Qu D, et al. Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction. Journal of Arid Land, 2022, 14: 653-672 [20] Ward EJ, Semmens BX, Schindler DE. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environmental Science & Techno-logy, 2010, 44: 4645-4650 [21] 云雷, 毕华兴, 马雯静, 等. 晋西黄土区林草复合系统刺槐根系分布特征. 干旱区资源与环境, 2012, 26(2): 151-155 [22] Ji JN, Kokutse N, Genet M, et al. Effect of spatial variation of tree root characteristics on slope stability: A case study on black locust (Robinia pseudoacacia) and arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena, 2012, 92: 139-154 [23] Lin GH, Phillips SL, Ehleringer JR. Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau. Oecologia, 1996, 106: 8-17 [24] Zwetsloot MJ, Bauerle TL. Repetitive seasonal drought causes substantial species-specific shifts in fine-root longevity and spatio-temporal production patterns in mature temperate forest trees. New Phytologist, 2021, 231: 974-986 [25] Duvert C, Canham CA, Barbeta A, et al. Deuterium depletion in xylem water and soil isotopic effects complicate the assessment of riparian tree water sources in the seasonal tropics. Ecohydrology, 2022, 15: e2383 [26] Zhao LJ, Wang LX, Cernusak LA, et al. Significant difference in hydrogen isotope composition between xylem and tissue water in Populus euphratica. Plant, Cell and Environment, 2016, 39: 1848-1857 [27] Zhao Y, Wang L. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements. Hydrology and Earth System Sciences, 2021, 25: 3975-3989 [28] Walker GR, Woods PH, Allison GB. Interlaboratory comparison of methods to determine the stable isotope composition of soil water. Chemical Geology, 1994, 111: 297-306 [29] Vega-Grau AM, McDonnell J, Schmidt S, et al. Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees. Science of the Total Environment, 2021, 795: 148675 [30] Dai JJ, Zhang XP, Luo ZD, et al. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, 2020, 589: 125199 [31] Barbeta A, Gimeno TE, Clavé L, et al. An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 2020, 227: 766-779 [32] Barbeta A, Jones SP, Clavé L, et al. Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 2019, 23: 2129-2146 [33] Barbeta A, Burlett R, Martin-Gomez P, et al. Evidence for distinct isotopic compositions of sap and tissue water in tree stems: Consequences for plant water source identification. New Phytologist, 2022, 233: 1121-1132 [34] Chen YL, Helliker BR, Tang XH, et al. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 33345-33350 [35] 翁群清, 郑秀娟, 解慧芳, 等. 植物凯氏带形成分子机制及功能特点的研究进展. 西北植物学报, 2017, 37(7): 1450-1456 |