[1] 何中声, 陈佳嘉, 朱静, 等. 戴云山南坡不同海拔森林土壤微生物功能多样性特征及影响因素. 生态学报, 2022, 42(9): 3504-3515 [2] Coban O, De Deyn GB, Van der Ploeg M. Soil micro-biota as game-changers in restoration of degraded lands. Science, 2022, 375: abe0725 [3] 张旭龙, 马淼, 吴振振, 等. 不同油葵品种对盐碱地根际土壤酶活性及微生物群落功能多样性的影响. 生态学报, 2017, 37(5): 1659-1666 [4] 李慧, 李雪梦, 姚庆智, 等. 基于Biolog-ECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征. 微生物学通报, 2020, 47(9): 2947-2958 [5] 黄鹏, 丁明军, 张华, 等. 土壤微生物群落结构及碳循环功能对高寒草甸退化和人工建植的响应. 生态学杂志, 2024, 43(6): 1691-1702 [6] Lopes LD, Fernandes MF. Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Applied Soil Ecology, 2020, 152: 103545 [7] 徐英德, 孙良杰, 王阳, 等. 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征. 中国环境科学, 2020, 40(10): 4504-4513 [8] 丁子健, 蒋师丞, 任百慧, 等. 土地利用方式对低山丘陵区土壤理化性质及微生物群落的影响. 草地学报, 2024, 32(2): 426-435 [9] 王明涛, 赵玉红, 苗彦军, 等. 不同土地利用方式对藏东南典型草原土壤真菌群落的影响. 草地学报, 2023, 31(4): 992-1000 [10] 张程程, 孙仲秀, 王秋兵, 等. 不同土地利用方式下第四纪古红土细菌和真菌群落特征. 土壤通报, 2023, 54(4): 897-912 [11] 宋丹丹. 东北黑土区不同土地利用方式对土壤细菌群落结构的影响. 硕士论文. 哈尔滨: 哈尔滨师范大学, 2024 [12] Wang Y, Chen L, Xiang WH, et al. Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. Global Change Biology, 2021, 27: 5643-5656 [13] Liu T, Wu XH, Li HW, et al. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest Ecology and Management, 2020, 477: 118473 [14] Yang X, Li TC, Shao MA. Factors controlling deep-profile soil organic carbon and water storage following Robinia pseudoacacia afforestation of the Loess Plateau in China. Forest Ecosystems, 2022, 9: 100079 [15] 陈蓉, 王韦韦, 曹丽荣, 等. 马尾松和杉木人工林细根碳氮磷化学计量特征随土层深度的变化. 生态学报, 2023, 43(9): 3709-3718 [16] Eilers KG, Debenport S, Anderson S, et al. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry, 2012, 50: 58-65 [17] Jiao S, Chen WM, Wang JL, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6: 146 [18] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 10-29 [19] 丁爽, 魏圣钊, 陈真亮, 等. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征. 应用生态学报, 2023, 34(3): 614-622 [20] 魏安琪, 魏天兴, 刘海燕, 等. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报, 2019, 41(4): 88-98 [21] Wen L, Li DJ, Xiao XP, et al. Alterations in soil microbial phospholipid fatty acid profile with soil depth following cropland conversion in karst region, southwest China. Environmental Science and Pollution Research, 2023, 30: 1502-1519 [22] 陈法霖, 张凯, 王芸, 等. 引进种桉树人工林取代天然次生林对土壤微生物群落结构和功能的影响. 生态学报, 2018, 38(22): 8070-8079 [23] 李新, 焦燕, 杨铭德. 用磷脂脂肪酸(PLFA)谱图技术分析内蒙古河套灌区不同盐碱程度土壤微生物群落多样性. 生态科学, 2014, 33(3): 488-494 [24] Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 1997, 35: 275-294 [25] Bahram M, Hildebrand F, Forslund SK, et al. Structure and function of the global topsoil microbiome. Nature, 2018, 560: 233-237 [26] Chen RR, Zhong LH, Jing ZW, et al. Fertilization decreases compositional variation of paddy bacterial community across geographical gradient. Soil Biology and Biochemistry, 2017, 114: 181-188 [27] Norris CE, Quideau SA, Oh SW, et al. Post-fire and harvest legacy on soil carbon and microbial communities in boreal forest soils. Forest Ecology and Management, 2023, 542: 121136 [28] Cai ZQ, Zhang YH, Yang C, et al. Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. Catena, 2018, 165: 369-380 [29] Zhang MY, O’Connor PJ, Zhang JY, et al. Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma, 2021, 384: 114801 [30] 纪立东, 郭鑫年, 孙权, 等. 宁夏引黄灌区不同土地利用方式土壤微生物群落多样性研究. 生态环境学报, 2020, 29(3): 516-524 [31] Lange M, Eisenhauer N, Sierra CA, et al. Plant diversity increases soil microbial activity and soil carbon sto-rage. Nature Communications, 2015, 6: 6707 [32] 张常仁, 杨雅丽, 程全国, 等. 不同耕作模式对东北黑土微生物群落结构和酶活性的影响. 土壤与作物, 2020, 9(4): 335-347 [33] 敖登, 贺琬婷, 冯程龙, 等. 青藏高原典型冰川小流域土壤微生物生物量及胞外酶活性分布特征. 生态学报, 2024, 44(4): 1700-1716 [34] Bach LH, Grytnes JA, Halvorsen R, et al. Tree influence on soil microbial community structure. Soil Biology and Biochemistry, 2010, 42: 1934-1943 [35] Li Y, Zhou CF, Qiu YX, et al. Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a Chinese fir plantation. Journal of Forestry Research, 2019, 30: 1913-1923 [36] 马进鹏, 庞丹波, 陈林, 等. 贺兰山东坡不同海拔典型植被带土壤微生物磷酸脂肪酸分析. 生态学报, 2022, 42(12): 5045-5058 [37] 杜家颖, 涂成龙, 盛茂银, 等. 黔中地区典型土地利用方式转变对微生物群落结构的影响. 四川农业大学学报, 2018, 36(3): 350-356 [38] Huang Q, Wang BR, Shen JK, et al. Shifts in C-degradation genes and microbial metabolic activity with vegetation types affected the surface soil organic carbon pool. Soil Biology and Biochemistry, 2024, 28: 109371 [39] Yao XD, Zhang NL, Zeng H, et al. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China. Science of the Total Environment, 2018, 630: 96-102 [40] 光家材, 张建兵, 方丹亮, 等. 地理隔离与土地利用对北部湾海岸及岛屿土壤微生物分布的影响研究[EB/OL]. (2023-12-21) [2024-04-20]. 西华师范大学学报:自然科学版, https://link.cnki.net/urlid/51.1699.N.20231220.1636.002 [41] Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1998, 35: 265-278 [42] McKinley V, Peacock AD, White DC. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry, 2005, 37: 1946-1958 [43] 杨林, 陈亚梅, 和润莲, 等. 高山森林土壤微生物群落结构和功能对模拟增温的响应. 应用生态学报, 2016, 27(9): 2855-2863 [44] 宁沐蕾. 崇明不同土地利用方式对土壤碳、氮及微生物群落结构的影响. 硕士论文. 上海: 上海交通大学, 2017 [45] Saetre P, Bth E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biology and Biochemistry, 2000, 32: 909-917 [46] 谷晓楠. 长白山西坡高山亚高山土壤微生物及酶活性随海拔的分布特征及其对氮沉降的响应. 硕士论文. 长春: 东北师范大学, 2018 [47] 邱雪丽. 改变碳输入对亚热带-暖温带气候过渡区三种林型土壤碳组分的影响. 硕士论文. 郑州: 河南大学, 2019 [48] 郭梨锦, 曹凑贵, 张枝盛, 等. 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响. 农业环境科学学报, 2013, 32(8): 1577-1584 [49] Siles JA, Vera A, Díaz-López M, et al. Land-use and climate-mediated variations in soil bacterial and fungal biomass across Europe and their driving factors. Geoderma, 2023, 434: 116474 [50] Hsiao CJ, Sassenrath GF, Zeglin LH, et al. Vertical changes of soil microbial properties in claypan soils. Soil Biology and Biochemistry, 2018, 121: 154-164 [51] Ji L, Yang YC, Yang LX, et al. Effect of land uses on soil microbial community structures among different soil depths in northeastern China. European Journal of Soil Biology, 2020, 99: 103205 [52] Liu C, Wu ZN, He CH, et al. Effect of soil microbial community structure on the chemical compositions of different soil organic matter fractions in land uses of the Pearl River Estuary. Applied Soil Ecology, 2024, 193: 105126 [53] 曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测定方法. 生态学报, 2011, 31(16): 4741-4748 [54] Xu TL, Chen X, Hou YH, et al. Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan Plateau. Plant and Soil, 2021, 459: 137-153 [55] Yang Y, Cheng H, Liu LX, et al. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. Forest Ecology and Management, 2020, 460: 117817 [56] 赵雯, 王丹丹, 热依拉·木民, 等. 阿尔山地区兴安落叶松林土壤微生物群落结构. 生物多样性, 2023, 31(2): 155-166 [57] 杨寅, 邱钰明, 王中斌, 等. 不同主伐方式对兴安落叶松(Larix gmelinii)根际土壤理化性质及微生物群落的影响. 生态学报, 2020, 40(21): 7621-7629 [58] 朱庆征, 冯志培, 冯二朋, 等. 祁连山区不同海拔植被带土壤微生物磷脂脂肪酸分析. 中国水土保持科学, 2023, 21(6): 32-42 |