[1] Donovan LA, Maherali H, Caruso CM, et al. The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 2011, 26: 88-95 [2] 冯洁, 江聪, 税伟, 等. 喀斯特退化天坑阴坡阳坡壳斗科植物的功能性状特征. 应用生态学报, 2021, 32(7): 2301-2308 [3] Wright I, Reich P, Cornelissen J, et al. Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166: 485-496 [4] 叶景秀, 柳海东, 星晓蓉, 等. 甘蓝型油菜叶绿素含量与产量关系研究及叶绿素主效QTL位点cqSPDA2连锁标记开发. 中国油料作物学报, 2022, 44(6): 1173-1181 [5] Weemstra M, Mommer L, Visser EJ, et al. Towards a multidimensional root trait framework: A tree root review. New Phytologist, 2016, 211: 1159-1169 [6] Li H, Liu B, McCormack MK, et al. Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 2017, 216: 1140-1150 [7] Freschet GT, Roumet C, Comas LH, et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytologist, 2021, 232: 1123-1158 [8] Luo WQ, Valverde-Barrantes OJ, Weemstra M, et al. Leaf and root traits are partially coordinated but they show contrasting multi-trait-based community trait dispersion patterns in a subtropical forest. Journal of Plant Ecology, 2024, 17: rtad045 [9] Duan G, Wen Z, Xue W, et al. Agents affecting the plant functional traits in national soil and water conservation Demonstration Park (China). Plants, 2022, 11: 2891 [10] Pierick K, Link RM, Leuschner C, et al. Elevational trends of tree fine root traits in species-rich tropical Andean forests. Oikos, 2023, 1: e08975 [11] Jiang X, Jia X, Gao S, et al. Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland. Frontiers in Plant Science, 2021, 12: 734775 [12] Liu GF, Freschet GT, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 2020, 188: 543-553 [13] Hajek P, Hertel D, Leuschner C. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Frontiers in Plant Science, 2013, 4: 415 [14] Yu W, Wang C, Huang Z, et al. Variations in the traits of fine roots of different orders and their associations with leaf traits in 12 co-occuring plant species in a semiarid inland dune. Plant and Soil, 2022, 472: 193-206 [15] Siefert A, Violle C, Chalmandrier L, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18: 1406-1419 [16] 纪若璇, 于笑, 常远, 等. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 2020, 44(3): 277-286 [17] Guo XL, Klisz M, Puchałka R, et al. Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. Journal of Ecology, 2021, 110: 1043-1053 [18] 白乌云, 侯向阳, 武自念, 等. 地理气候因素对羊草性状分化的影响. 干旱区资源与环境, 2020, 34(11): 138-142 [19] Ji Z, Yan H, Cui Q, et al. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Systematic and Applied Microbiology, 2015, 38: 176-183 [20] 张强, 程滨, 杨治平, 等. 芦芽山鬼箭锦鸡儿灌丛营养特征及土壤养分分布规律. 应用生态学报, 2006, 17(12): 2287-2291 [21] 艾喆, 徐婷婷, 李媛媛, 等. 鬼箭锦鸡儿叶片和土壤碳稳定同位素特征及其影响因素. 应用生态学报, 2021, 32(5): 1744-1752 [22] Zhu LL, Chen LR, Xu XJ. Application of a molecularly imprinted polymer for the effective recognition of different anti-epidermal growth factor receptor inhibitors. Analytical Chemistry, 2003, 75: 6381-6387 [23] 李媛媛, 徐婷婷, 艾喆, 等. 不同海拔鬼箭锦鸡儿根际和非根际土壤细菌群落多样性及PICRUSt功能预测. 环境科学, 2023, 44(4): 2304-2314 [24] Galván-Cisneros CM, Villa PM, Coelho AJP, et al. Altitude as environmental filtering influencing phylogenetic diversity and species richness of plants in tropical mountains. Journal of Mountain Science, 2023, 20: 285-298 [25] de Bello F, Carmona CP, Dias ATC, et al. Handbook of Trait-Based Ecology: From Theory to R Tools. Cambridge, UK: Cambridge University Press, 2021 [26] Reich PB, Buschena C, Tjoelker MG, et al. Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: A test of functional group differences. New Phytologist, 2003, 157: 617-631 [27] Fridley JD, Bauerle TL, Craddock A, et al. Fast but steady: An integrated leaf-stem-root trait syndrome for woody forest invaders. Ecology Letters, 2022, 25: 900-912 [28] 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系. 应用生态学报, 2018, 29(2): 449-458 [29] 李雨亭, 钟全林, 李宝银, 等. 同期生长在种源地与异地同质园刨花楠叶性状分析. 生态学报, 2023, 43(14): 5956-5966 [30] Wen X, Wang X, Ye M, et al. Response strategies of fine root morphology of Cupressus funebris to the different soil environment. Frontiers in Plant Science, 2022, 13: 1077090 [31] Lajoie G, Vellend M. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change. Ecology and Evolution, 2018, 8: 3895-3907 [32] Craine JM, Lee WG, Bond WJ, et al. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 2005, 86: 12-19 [33] Craine JM, Lee WG. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 2003, 134: 471-478 [34] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [35] 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化. 生态学报, 2011, 31(22): 6805-6814 [36] 郭茹, 温仲明, 王红霞, 等. 延河流域植物叶性状间关系及其在不同植被带的表达. 应用生态学报, 2015, 26(12): 3627-3633 [37] Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2014, 102: 275-301 [38] He JS, Wang L, Flynn DFB, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155: 301-310 [39] Cheng J, Chu P, Chen D, et al. Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Functional Ecology, 2016, 30: 985-997 [40] Mueller KE, Kray JA, Blumenthal DM. Coordination of leaf, root, and seed traits shows the importance of whole plant economics in two semiarid grasslands. New Phyto-logist, 2024, 241: 2410-2422 [41] Caplan JS, Meiners SJ, Flores-Moreno H, et al. Fine-root traits are linked to species dynamics in a successional plant community. Ecology, 2019, 100: e02588 [42] Comas LH, Eissenstat DM. Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist, 2009, 182: 919-928 [43] Kong D, Wang J, Wu H, et al. Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 2019, 10: 2203 [44] Zhang Q, Xiong GM, Li JX, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: The effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 2018, 427: 305-319 [45] Kerkhoff AJ, Fagan WF, Elser JJ, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 2006, 168: E103-E122 [46] 胡永春, 范新宇, 邵毅贞, 等. 地形和光照因子对白云山国家森林公园苔藓植物功能性状的影响. 河南农业大学学报, 2021, 55(1): 89-96 [47] Chen Y, Han W, Tang L, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 2013, 36: 178-184 [48] Xu L, He NP, Yu GR. Nitrogen storage in China’s terrestrial ecosystems. Science of the Total Environment, 2020, 709: 136201 [49] 杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子. 植物生态学报, 2017, 41(12): 1228-1238 [50] van de Weg MJ, Meir P, Grace J, et al. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon Andes gradient in Peru. Plant Ecology & Diversity, 2009, 2: 243-254 [51] Zhao N, Yu G, He N, et al. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research, 2016, 129: 647-657 [52] 高慧蓉, 王志波, 龚浩鑫, 等. 太白山植物叶片和细根氮含量沿海拔梯度的变异规律. 西北林学院学报, 2024, 39(1): 162-168 [53] Zhang JH, He NP, Liu CC, et al. Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 2018, 127: 1506-1514 [54] Wang JY, Wang JN, Guo WH, et al. Stoichiometric homeostasis, physiology, and growth responses of three tree species to nitrogen and phosphorus addition. Trees, 2018, 32: 1377-1386 [55] Petr M, Leoš K, Lubomír A, et al. Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Arctic, Antarctic, and Alpine Research, 2012, 44: 62-66 [56] Peñuelas J, Sardans J, Estiarte M, et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology, 2013, 19: 2303-2338 |