[1] Marchin RM, Backes D, Ossola A, et al. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change Biology, 2022, 28: 1133-1146 [2] Williams AP, Allen CD, Millar CI, et al. Forest res-ponses to increasing aridity and warmth in the southwes-tern United States. Proceedings of the National Aca-demy of Sciences of the United States of America, 2010, 107: 21289-21294 [3] Duan H, Ontedhu J, Milham P, et al. Effects of eleva-ted carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Tree Physiology, 2019, 39: 1821-1837 [4] Schollert M, Kivimaenpaa M, Michelsen A, et al. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. Annals of Botany, 2017, 119: 433-445 [5] Ni XF, Sun LJ, Cai Q, et al. Variation and determinants of leaf anatomical traits from boreal to tropical forests in eastern China. Ecological Indicators, 2022, 140: 108992 [6] Della Torre F, Ferreira BG, Lima JE, et al. Leaf morphophysiological changes induced by long-term drought in Jatropha curcas plants explain the resilience to extreme drought. Journal of Arid Environments, 2021, 185: 104381 [7] Zhou Y, Deng J, Tai Z, et al. Leaf anatomy, morpho-logy and photosynthesis of three tundra shrubs after 7-year experimental warming on Changbai Mountain. Plants, 2019, 8: 271 [8] Yuan G, Guo Q, Zhang Y, et al. Geographical differences of leaf traits of the endangered plant Litsea coreana Levl. var. sinensis and its relationship with climate. Journal of Forestry Research, 2023, 34: 125-135 [9] Han M, Ji C, Zuo W, et al. Interactive effects of eleva-ted CO2 and temperature on the anatomical characteristics of leaves in eleven species. Frontiers of Biology in China, 2007, 2: 333-339 [10] 李林鑫, 陶长铸, 林景泉, 等. 不同杉木无性系叶片解剖结构对大气增温的响应. 生态学报, 2022, 42(20): 8385-8397 [11] 韩梅, 吉成均, 左闻韵, 等. CO2浓度和温度升高对11种植物叶片解剖特征的影响. 生态学报, 2006, 26(2): 326-333 [12] Reich PB, Sendall KM, Rice K, et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 2015, 5: 148-152 [13] Sendall KM, Reich PB, Zhao C, et al. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 2015, 21: 1342-1357 [14] Petrík P, Petek A, Konôpková A, et al. Stomatal and leaf morphology response of European Beech (Fagus syl-vatica L.) provenances transferred to contrasting cli-matic conditions. Forests, 2020, 11, DOI: 10.3390/f11121359 [15] Bresson CC, Vitasse Y, Kremer A, et al. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 2011, 31: 1164-1174 [16] 纪若璇, 于笑, 常远, 等. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 2020, 44(3): 277-286 [17] Kardošová M, Husárová H, Kurjak D, et al. Variation in leaf anatomy, vascular traits and nanomechanical cell-wall properties among European beech (Fagus sylvatica L.) provenances. Annals of Forest Science, 2020, 77: 1-15 [18] Anderson JT. Plant fitness in a rapidly changing world. New Phytologist, 2016, 210: 81-87 [19] Quan XK, Wang CK. Acclimation and adaptation of leaf photosynthesis, respiration and phenology to climate change: A 30-year Larix gmelinii common-garden experi-ment. Forest Ecology and Management, 2018, 411: 166-175 [20] Ravn J, D’Orangeville L, Lavigne MB, et al. Phenotypic plasticity enables considerable acclimation to heat and drought in a cold-adapted boreal forest tree species. Frontiers in Forests and Global Change, 2022, 5, DOI: 10.3389/ffgc.2022.1075787 [21] Xu T, Niu X, Wang B, et al. Variations in leaf functional traits and photosynthetic parameters of Cunninghamia lanceolata provenances. Forests, 2023, 14, DOI: 10.3390/f14091708 [22] 吕程瑜, 刘艳红. 不同遮荫条件下梓叶槭幼苗生长与光合特征的种源差异. 应用生态学报, 2018, 29(7): 2307-2314 [23] 杨传平, 秦泗华, 张维, 等. 中国兴安落叶松种源试验研究.Ⅱ. 种源初步区划. 东北林业大学学报, 1990, 18(8): 26-33 [24] 张培杲. 兴安落叶松种子区区划. 北京: 中国林业出版社, 1989 [25] 国家林业和草原局, 中国森林资源报告. 北京: 中国林业出版社, 2019 [26] 季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 2013, 33(21): 6967-6974 [27] Lee JY, Marotzke J, Bala G, et al. Future global climate: Scenario-based projections and near-term information//IPCC, ed. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 553-672 [28] Hao L, Chang Z, Lu Y, et al. Drought dampens the positive acclimation responses of leaf photosynthesis to elevated CO2 by altering stomatal traits, leaf anatomy, and Rubisco gene expression in Pyrus. Environmental and Experimental Botany, 2023, 211: 105375 [29] Ndah F, Valolahti H, Schollert M, et al. Influence of increased nutrient availability on biogenic volatile orga-nic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. Annals of Botany, 2022, 129: 443-455 [30] Bahamonde HA, Aranda I, Peri PL, et al. Leaf wettability, anatomy and ultra-structure of Nothofagus antarctica and N. betuloides grown under a CO2 enriched atmosphere. Plant Physiology and Biochemistry, 2023, 194: 193-201 [31] 王玉萍, 高会会, 张峰, 等. 珠芽蓼叶片对海拔变化的表型可塑性. 应用生态学报, 2021, 32(6): 2070-2078 [32] 陈丽华, 宋丽华, 谢云. “灵武长枣”生长和叶片解剖结构对大气增温的响应. 北方园艺, 2020(20): 1-8 [33] 曾瑞琪, 赵家国, 刘银占, 等. 川西林线交错带岷江冷杉幼苗异龄叶形态对长期模拟增温的响应. 生态学报, 2018, 38(11): 4008-4017 [34] 刘全宏, 王孝安, 田先华, 等. 太白红杉(Larix chinensis)叶的形态解剖学特征与环境因子的关系. 西北植物学报, 2001, 21(5): 885-893 [35] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 2005, 22(增刊1): 118-127 [36] 陈丽茹, 邵景侠, 李秧秧. 施用氮、磷对油松幼苗叶形态与解剖结构的影响. 应用与环境生物学报, 2017, 23(2): 364-369 [37] 张诚诚, 文佳, 曹志华, 等. 水分胁迫对油茶容器苗叶片解剖结构和光合特性的影响. 西北农林科技大学学报: 自然科学版, 2013, 41(8): 79-84 [38] 吴丽君, 李志辉, 杨模华, 等. 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应. 应用生态学报, 2015, 26(12): 3619-3626 [39] 张小燕, Alison WKS, Tadashi K, 等. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传. 植物生态学报, 2021, 45(11): 1241-1250 |