[1] IPCC. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2021 [2] Xia JY, Chen JQ, Piao SL, et al. Terrestrial carbon cycle affected by non-uniform climate. Nature Geoscience, 2014, 7: 173-180 [3] 包文, 段安民, 游庆龙, 等. 青藏高原气候变化及其对水资源影响的研究进展. 气候变化研究进展, 2024, 20(2): 158-169 [4] Duan JP, Li L, Chen L, et al. Time-dependent warming amplification over the Tibetan Plateau during the past few decades. Atmospheric Science Letters, 2020, 21: e998 [5] Ran YH, Li X, Cheng GD. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. The Cryosphere, 2018, 12: 595-608 [6] Zhang GF, Nan ZT, Wu XB, et al. The role of winter warming in permafrost change over the Qinghai-Tibet Plateau. Geophysical Research Letters, 2019, 46: 11261-11269 [7] Guo L, Chen J, Luedeling E, et al. Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau. Plant and Soil, 2018, 425: 177-188 [8] Gou XL, Tan B, Wu FZ, et al. Seasonal dynamics of soil microbial biomass C and N along an elevational gradient on the eastern Tibetan Plateau, China. PLoS One, 2015, 10: e0132443 [9] Gong YM, Yue P, Li KH, et al. Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan. Biogeosciences, 2021, 18: 3529-3537 [10] 严珺, 吴纪华. 植物多样性对土壤动物影响的研究进展. 土壤, 2018, 50(2): 231-238 [11] Uhey DA, Riskas HL, Smith AD, et al. Ground-dwelling arthropods of pinyon-juniper woodlands: Arthropod community patterns are driven by climate and overall plant productivity, not host tree species. PLoS One, 2020, 15: e0238219 [12] Bardgett RD, Putten WHVD. Belowground biodiversity and ecosystem functioning. Narure, 2014, 515: 505-511 [13] Heděnec P, Jiménez JJ, Moradi J, et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Scientific Reports, 2022, 12: 17362 [14] 刘志涛, 王莹, 高铸成, 等. 环境因子对甘南高寒草甸地表大型节肢动物多样性的影响. 动物学杂志, 2023, 58(2): 237-249 [15] 张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制. 生态学杂志, 2020, 39(2): 655-664 [16] Barreto C, Conceição PHS, Lima ECAD, et al. Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science, 2023, 11: 1153683 [17] Convey P, Pugh PJA, Jackson C, et al. Response of Antarctic terrestrial microarthropods to long-term climate manipulations. Ecology, 2022, 83: 3130-3140 [18] Barreto C, Branfireun BA, McLaughlin JW, et al. Res-ponses of oribatid mites to warming in boreal peatlands depend on fen type. Pedobiologia, 2021, 89: 150772 [19] 马丽, 张骞, 张中华, 等. 梯度增温对高寒草甸物种多样性和生物量的影响. 草地学报, 2020, 28(5): 1395-1402 [20] Peng Y, Peñuelas J, Vesterdal L, et al. Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecology Letters, 2022, 25: 1961-1973 [21] Roos RE, Birkemoe T, Asplund J, et al. Legacy effects of experimental environmental change on soil micro-arthropod communities. Ecosphere, 2020, 11: e03030 [22] Holmstrup M, Ehlers BK, Slotsbo S, et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming. Functional Ecology, 2018, 32: 1304-1316 [23] Meehan ML, Barreto C, Turnbull MS, et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia, 2020, 83: 150672 [24] 魏雯琳, 邱晓杰, 王文瑞, 等. 季节增温对内蒙古半干旱草地土壤化学计量特征的影响. 草业科学, 2022, 40(8): 1988-1999 [25] Wang Q, Lv WW, Li BW, et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost. Global Change Biology, 2020, 26: 2630-2641 [26] Zong N, Geng SB, Duan C, et al. The effects of warming and nitrogen addition on ecosystem respiration in a Tibetan alpine meadow: The significance of winter warming. Ecology and Evolution, 2018, 8: 10113-10125 [27] Cao R, Chen Y, Wu X, et al. The effect of drainage on CO2, CH4 and N2O emissions in the Zoige peatland: A 40-month in situ study. Mires Peat, 2018, 21: 1-15 [28] Wang XY, Wu CY, Peng DL, et al. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agricultural and Forest Meteorology, 2018, 256: 61-74 [29] 尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 2000 [30] 李鸿兴. 昆虫分类检索. 北京: 农业出版社, 1987 [31] 忻介六. 农业螨类学. 北京: 农业出版社, 1988 [32] Kitching RL, Dahlsjö CAL, Eggleton P. Invertebrates and the complexity of tropical ecosystems. Biotropica, 2020, 52: 207-214 [33] Cao ZP, Han XM, Hu C, et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Applied Soil Ecology, 2011, 49: 131-138 [34] Chahartaghia M, Langelb R, Scheua S, et al. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 2005, 37: 1718-1725 [35] 刘光崧. 土壤理化分析与剖面描述. 北京: 中国标准出版社, 1996 [36] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [37] Chauvat M, Forey E. Temperature modifies the magnitude of a plant response to Collembola presence. Applied Soil Ecology, 2021, 158: 103814 [38] Koltz AM, Schmidt NM, Høye TT. Differential arthropod responses to warming are altering the structure of Arctic communities. Royal Society Open Science, 2018, 5: 171503 [39] Coulson SJ, Hodkinson ID, Webb NR, et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biology, 1996, 16: 147-153 [40] Sjursen H, Michelsen A, Jonasson S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Applied Soil Ecology, 2005, 30: 148-161 [41] Abrego N, Roslin T, Huotari T, et al. Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Eco-graphy, 2021, 44: 885-896 [42] 郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应. 应用生态学报, 2017, 28(9): 2840-2848 [43] 卢胜旭, 许恩兰, 吴东梅, 等. 米槠人工林土壤微生物群落组成对凋落物输入的响应. 森林与环境学报, 2020, 40(1): 16-23 [44] 杨立宾, 隋心, 魏丹, 等. 大兴安岭棕色针叶林土壤的真菌多样性. 应用生态学报, 2019, 30(10): 3411-3418 [45] Briones MJI, Ostle NJ, McNamara NP, et al. Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 2009, 41: 315-322 [46] Turnbull MS, Lindo Z. Combined effects of abiotic factors on Collembola communities reveal precipitation may act as a disturbance. Soil Biology and Biochemistry, 2014, 82: 36-43 [47] Blankinship JC, Niklaus PA, Hungate BA. A meta-analysis of responses of soil biota to global change. Oecologia, 2011, 165: 553-565 [48] Bokhorst S, Convey P, Huiskes A, et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands. Austral Ecology, 2017, 42: 984-994 [49] 刘继亮, 赵文智, 王永珍, 等. 疏勒河源区高寒草甸中型土壤动物群落特征及对土壤水分变化的响应. 冰川冻土, 2023, 45(6): 1911-1922 [50] Cole L, Buckland SM, Bardgett RD. Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland. Soil Biology and Biochemistry, 2008, 40: 505-514 [51] Makkonen M, Berg MP, van Hal JR, et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biology and Biochemistry, 2011, 43: 377-384 [52] Xu GL, Kuster TM, Goerg MSG, et al. Seasonal exposure to drought and air warming affects soil Collembola and mites. PLoS One, 2012, 7: e43102 [53] Chang L, Wang BF, Yan XM, et al. Warming limits daytime but not nighttime activity of epigeic microarthropods in Songnen grasslands. Applied Soil Ecology, 2019, 141: 79-83 [54] Zhang H, Sun X, Liu D, et al. Air warming and drainage influences soil microarthropod communities. Frontiers in Ecology and Evolution, 2021, 9: 731735 [55] Salamon JA, Schaefer M, Alphei J, et al. Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos, 2004, 106: 51-60 [56] 姚世庭, 芦光新, 邓晔, 等. 模拟增温对土壤真菌群落组成及多样性的影响. 生态环境学报, 2021, 30(7): 1404-1411 [57] Sayer EJ, Tanner EVJ, Lacey AL. Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. Forest Ecology and Management, 2006, 229: 285-293 [58] Viketoft M. Effects of six grassland plant species on soil nematodes: A glasshouse experiment. Soil Biology and Biochemistry, 2008, 40: 906-915 [59] Lindo Z. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biology and Biochemistry, 2015, 91: 271-278 [60] Meehan ML, Caruso T, Lindo Z. Short-term intensive warming shifts predator communities (Parasitiformes: Mesostigmata) in boreal forest soils. Pedobiologia, 2021, 87: 150742 [61] Thakur MP, Kunne T, Griffin JN, et al. Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proceedings of the Royal Society B: Biological Sciences, 2017, 284: 20162570 [62] 孙彩彩, 董全民, 杨晓霞, 等. 牦牛和藏羊放牧对青藏高原高寒草甸土壤节肢动物群落的影响. 应用生态学报, 2023, 34(11): 3127-3134 [63] Markkula I, Cornelissen JHC, Aerts R. Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub-Arctic peat bog. Polar Biology, 2018, 42: 581-591 [64] 窦永静, 王让虎, 吴东辉. 冻融作用对大兴安岭多年冻土区土壤节肢动物的影响. 应用生态学报, 2022, 33(5): 1405-1412 |