[1] Field CB, Behrenfeld MJ, Randerson JT, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 1998, 281: 237-240 [2] Ito A. A historical meta-analysis of global terrestrial net primary productivity: Are estimates converging? Global Change Biology, 2011, 17: 3161-3175 [3] Chi DK, Wang H, Li XB, et al. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecological Indicators, 2018, 88: 372-383 [4] Zhao MS, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329: 940-943 [5] Lauenroth KW, Wade AA, Williamson AM, et al. Uncertainty in calculations of net primary production for grasslands. Ecosystems, 2006, 9: 843-851 [6] Nemani RR, Keeling DC, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560-1563 [7] Lieth H. Modeling the primary productivity of the world//Lieth H, Whittaker RH, eds. Primary productivity of the biosphere. Berlin: Springer, 1975: 237-263 [8] Lieth H, Box E. Evapotranspiration and primary productivity! C.W Thornthwaite memorial model. Publications in Climatology, 1972, 25: 37-46 [9] Zenbei U, Hiroshi S. Agroclimatic evaluation of net primary productivity of natural vegetations. Journal of Agricultural Meteorology, 1985, 40: 343-352 [10] 姜群鸥. 基于AEZ模型的中国农业生产力的估算及其对耕地利用变化的响应. 硕士论文. 长沙: 中南大学, 2008 [11] 李焱, 靳甜甜, 高秉丽, 等. 1901—2017年藏西南高原气候及其生产潜力时空变化. 自然资源学报, 2022, 37(7): 1918-1934 [12] 何云玲, 张一平. 云南省自然植被净初级生产力的时空分布特征. 山地学报, 2006, 24(2): 193-201 [13] Lu ZW, Chen PW, Yang YR, et al. Exploring quantification and analyzing driving force for spatial and temporal differentiation characteristics of vegetation net primary productivity in Shandong Province, China. Ecological Indicators, 2023,153: 110471 [14] 黄悦悦, 杨东, 冯磊. 近年来宁夏植被指数与气候生产力的时空变化. 水力发电学报, 2019, 38(11): 70-81 [15] Wang CL, Jiang QO, Engel B, et al. Analysis on net primary productivity change of forests and its multi-level driving mechanism: A case study in Changbai Mountains in Northeast China. Technological Forecasting and Social Change, 2020, 153: 119939 [16] Zhang C, Zhen HB, Zhang SH, et al. Dynamic changes in net primary productivity of marsh wetland vegetation in China from 2005 to 2015. Ecological Indicators, 2023, 155: 110465 [17] 张颖, 章超斌, 王钊齐, 等. 气候变化与人为活动对三江源草地生产力影响的定量研究. 草业学报, 2017, 26(5): 1-14 [18] 徐新良, 刘纪远, 曹明奎, 等. 近期气候波动与LUCC过程对东北农田生产潜力的影响. 地理科学, 2007, 27(3): 318-324 [19] 李秀芬, 吴双, 赵放, 等. 寒地大豆气候生产潜力特征及其对气候变化的响应. 应用生态学报, 2024, 35(6): 1615-162 [20] Li J, Wang ZL, Lai CG, et al. Response of net primary production to land use and land cover change in China’s mainland since the late 1980s. Science of the Total Environment, 2018, 639: 237-247 [21] 赵慧颖, 田宝星, 宫丽娟, 等. 近308年来大兴安岭北部森林植被气候生产潜力及其对气候变化的响应. 生态学报, 2017, 37(6): 1900-1911 [22] 刘丹, 于成龙. 基于MODIS的东北三省植被NPP潜在气候生产力估算. 水土保持研究, 2017, 24(4): 315-323 [23] 李秀芬, 赵慧颖, 朱海霞, 等. 黑龙江省玉米气候生产力演变及其对气候变化的响应. 应用生态学报, 2016, 27(8): 2561-2570 [24] 朱教君, 康宏樟, 李智辉, 等. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 2005, 25(10): 2527-2533 [25] 李俊霞, 白学平, 张先亮, 等. 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异. 生态学报, 2017, 37(21): 7232-7241 [26] Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43: 51-67 [27] Douglass AE. Tree rings and climate. Environmental Science & Technology, 1995, 29: 392A [28] 郭佩佩, 杨东, 王慧, 等. 1960—2011年三江源地区气候变化及其对气候生产力的影响. 生态学杂志, 2013, 32(10): 2806-2814 [29] Foufoula-Georgiou E, Kumar P. Wavelet analysis in geophysics: An introduction//Foufoula-Georgiou, Kumar P, eds. Wavelet in Grophysics. New York: Academic Press, 1994: 1-43 [30] 马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析. 自然资源学报, 2020, 35(12): 3039-3050 [31] 刘江, 潘宇弘, 王平华, 等. 1966—2015年辽宁省玉米气候生产潜力的时空特征. 生态学杂志, 2018, 37(11): 3396-3406 [32] IPCC. Climate change 2014: Synthesis report//IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014: 151 [33] 陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系:以湖南省为例. 地理学报, 2016, 71(1): 35-48 [34] Zhang W, Xi M, Liu H, et al. Low sensitivity of net primary productivity to climatic factors in three karst provinces in southwest China from 1981 to 2019. Ecolo-gical Indicators, 2023, 153: 110465 [35] Huang X, Huang C, Teng M, et al. Net primary productivity of Pinus massoniana dependence on climate, soil and forest characteristics. Forests, 2020, 11: 404 [36] Zhang X, Xiao W, Wang Y, et al. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. Journal of Earth System Science, 2020, 129: 24 [37] 孙彦坤, 王鼎震, 徐晓伟, 等. 黑土区气候生产潜力与植被指数关系的分析. 东北农业大学学报, 2012, 43(11): 103-109 [38] 王春学, 秦宁生, 周斌,等. 1850年以来川西高原北部植被气候生产潜力时空变化特征. 水土保持研究, 2020, 27(6): 188-195 [39] 史江峰, 刘禹, 蔡秋芳, 等. 油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制:以贺兰山地区为例. 生态学报, 2006, 26(3): 697-705 [40] 罗布, 边多, 白玛, 等. 藏北高寒牧区NPP的时空变化特征及2 ℃全球变暖背景下的预估. 冰川冻土, 2020, 42(2): 653-661 |