欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (4): 1099-1108.doi: 10.13287/j.1001-9332.202504.019

• 研究论文 • 上一篇    下一篇

铝胁迫下绣球花不同品种苗期铝吸收能力及其生理生化机制

陈文娟1,2, 陈双双2, 冯景2, 陈慧杰2, 周惠民2, 刘欣童2, 张旭晖1*, 邓衍明1,2   

  1. 1南京林业大学南方现代林业协同创新中心, 南京 210037;
    2江苏省农业科学院休闲农业研究所/江苏省高效园艺作物遗传改良重点实验室, 南京 210014
  • 收稿日期:2024-10-16 接受日期:2025-03-02 出版日期:2025-04-18 发布日期:2025-10-18
  • 通讯作者: *E-mail: huihui19820131@163.com
  • 作者简介:陈文娟, 女, 1999年生, 硕士研究生。主要从事观赏植物资源培育与高效利用研究。E-mail: juanjuanc1999@163.com
  • 基金资助:
    国家自然科学基金项目(32371956)、江苏省农业科技自主创新资金项目(CX(2022)2035)和中央财政林业科技推广示范项目(苏[2024]TG03)

Aluminum absorption capacity of different cultivars of Hydrangea macrophylla seedlings under aluminum stress and the physiological and biochemical mechanisms

CHEN Wenjuan1,2, CHEN Shuangshuang2, FENG Jing2, CHEN Huijie2, ZHOU Huimin2, LIU Xintong2, ZHANG Xuhui1*, DENG Yanming1,2   

  1. 1Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
    2Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences/Provincial Key Laboratory for Horticultural Crops Genetics and Improvement, Nanjing 210014, China
  • Received:2024-10-16 Accepted:2025-03-02 Online:2025-04-18 Published:2025-10-18

摘要: 绣球花具有较强的耐酸、耐铝性,很多品种能够吸收土壤中Al3+而使其花色由红变蓝,可用于酸性富铝土壤的生态修复。为比较不同品种铝吸收能力差异,本研究以45个常用绣球花品种为材料,采用水培法对扦插幼苗进行0(对照)、800 μmol·L-1 Al2(SO4)3处理,通过根尖染色观察、铝含量测定等进行铝吸收能力综合分析,筛选出铝吸收能力强和弱的代表性品种进行铝处理下生理生化指标测定,分析其耐铝生理生化机制。结果表明: 45个绣球花品种的铝吸收能力可划分为强、较强、中、较弱和弱5个等级,分别包含2、11、15、15和2个品种,其中,无尽夏和白色天使可分别作为铝吸收能力强和弱的代表性品种。与白色天使相比,铝处理后无尽夏叶片叶绿素含量、蒸腾速率、净光合速率、胞间CO2浓度和气孔导度分别显著增加24.8%、63.9%、11.2%、9.2%和66.7%,根长、根表面积、根体积和根尖数分别增加4.7%、2.9%、14.3%和7.8%,根系和叶片的抗氧化酶(过氧化物酶、过氧化氢酶和超氧化物歧化酶)活性、可溶性糖、可溶性蛋白含量分别显著增加88.4%、35.3%、7.7%、2.4%、21.7%和78.4%、103.7%、101.1%、138.9%、18.1%。无尽夏可能通过增强光合作用,提高体内酶活性和非酶抗氧化物质含量以有效保护自身免受铝胁迫伤害,从而提高铝吸收能力与耐铝性,可用于修复酸性富铝土壤。

关键词: 绣球花, 铝吸收, 酸性土壤, 生理生化机制

Abstract: Hydrangea macrophylla exhibits strong tolerance to acid and aluminum stress. Many cultivars can absorb Al3+ from soils, resulting in variations of their flower color from red to blue. This characteristic presents a potential avenue for the ecological remediation of aluminum-rich acidic soils. To assess the capacities of aluminum absorption among different cultivars, we utilized the cutting seedlings of 45 popular H. macrophylla cultivars via hydroponic culture, which were treated under 0 (control) and 800 μmol·L-1 Al2(SO4)3. The aluminum absorption abilities were determined through root tip staining and aluminum content determination methods. We selected two representative cultivars with the strongest or weakest aluminum absorption capacities for further investigation of the physiological and biochemical mechanisms under aluminum stress. The results showed that the 45 cultivars could be categorized into five levels according to their aluminum absorption capacities: strong, relatively strong, intermediate, relatively weak, and weak, comprising 2, 11, 15, 15, and 2 cultivars, respectively. Amongst them, Bailer and White angel were identified as representative of strong and weak aluminum absorption capacities, respectively. In comparison to White angel, the aluminum-treated Bailer exhibited significant increases in chlorophyll content, transpiration rate, net photosynthetic rate, intercellular CO2 concentration, and stomatal conductance with significant increase of 24.8%, 63.9%, 11.2%, 9.2%, and 66.7%, root length, root surface area, root volume, and root tip number increased by 4.7%, 2.9%, 14.3%, and 7.8%, the activities of antioxidant enzymes (peroxidase, catalase, and superoxide dismutase), and the contents of soluble sugar and soluble proteins exhibited significant increases by 88.4%, 35.3%, 7.7%, 2.4%, and 21.7% in the roots, and 78.4%, 103.7%, 101.1%, 138.9%, and 18.1% in the leaves, respectively. These findings suggested that Bailer could effectively mitigate damage from Al stress by enhancing photosynthesis, antioxidant enzymatic activities, and nonenzymatic antioxidants, thereby improving its aluminum absorption ability and tolerance, which has the potential application in the remediation of aluminum-rich acidic soils.

Key words: Hydrangea macrophylla, aluminum absorption, acidic soil, physiological and biochemical mechanism