[1] 赵天龙, 解光宁, 张晓霞, 等. 酸性土壤上植物应对铝胁迫的过程与机制. 应用生态学报, 2013, 24(10): 3003-3011 [2] 黄凯, 张红宇, 张菡倩, 等. 植物应答铝毒的分子机制研究进展. 生物技术通报, 2021, 37(3): 125-135 [3] Emanuel BQ, Camilo EM, Ileana EM, et al. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 2017, 8: 1767 [4] 林郑和, 陈荣冰. 植物铝毒及其耐铝机制研究进展. 中国农学通报, 2009, 25(13): 94-98 [5] 张冉, 韩博, 任健, 等. 铝对植物毒害及草本植物耐铝毒机制研究进展. 云南农业大学学报, 2020, 35(2): 353-360 [6] Sun LL, Zhang MS, Liu XM, et al. Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology, 2020, 62: 984-997 [7] Liu JM, Khan S, Hu Y, et al. Physiological mechanisms of exogenous organic acids to alleviate aluminum toxicity in seedlings of mungbean, buckwheat, and rice. Plant Physiology and Biochemistry, 2023, 203: 108031 [8] Chen SS, Qi XY, Feng J, et al. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals. Plant Physiology and Biochemistry, 2022, 185: 268-278 [9] 彭尽晖, 周朴华, 周红灿, 等. 湖南省绣球属植物资源调查. 湖南农业大学学报, 2008, 34(5): 563-567 [10] 吴凡, 江俊浩, 卢山, 等. 中国绣球属种质资源及其利用研究进展. 园艺学报, 2022, 49(9): 2037-2050 [11] Qin ZY, Chen SS, Feng J, et al. Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress. PeerJ, 2022, 10: e13620 [12] 毛俊丹, 陈慧杰, 齐香玉, 等. 钢渣混合基质对大花绣球扦插生根的影响. 应用生态学报, 2024, 35(8): 2150-2158 [13] 邓衍明, 韩勇, 齐香玉, 等. 绣球属植物种质资源分析及其花色可调性和叶斑病抗性比较. 植物资源与环境学报, 2018, 27(4): 90-100 [14] Jin J, Song ZY, Zhao B, et al. Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure. Ecotoxicology and Environmental Safety, 2022, 243: 113960 [15] Luo SW, Li Y, Wan YB, et al. Identification of key candidate genes involved in aluminum accumulation in the sepals of Hydrangea macrophylla. Horticulturae, 2024, 10: 1180 [16] 陈国熙, 周惠民, 陈慧杰, 等. 观赏植物修复城市铅污染土壤技术分析与展望. 植物资源与环境学报, 2025, 34(1): 82-93 [17] 王晓玥, 陈双双, 齐香玉, 等. 绣球花铝转运蛋白HmALMT11的生物信息学及其表达特性分析. 华北农学报, 2024, 39(4): 94-101 [18] Yang TY, Cai LY, Qi YP, et al. Increasing nutrient solution pH alleviated aluminum-induced inhibition of growth and impairment of photosynthetic electron transport chain in Citrus sinensis seedlings. BioMed Research International, 2019, 2019: 9058715 [19] 周小华, 周泽仪, 李昆志. 铝胁迫下外源抗坏血酸对水稻幼苗抗氧化性能的影响. 核农学报, 2020, 34(10): 2368-2375 [20] Deng YM, Li CC, Shao QS, et al. Differential responses of double petal and multi petal jasmine to shading. I. Photosynthetic characteristics and chloroplast ultrastructure. Plant Physiology and Biochemistry, 2012, 55: 93-102 [21] Deng YM, Shao QS, Li CC, et al. Differential responses of double petal and multi petal jasmine to shading. II. Morphology, anatomy and physiology. Scientia Horticulturae, 2012, 144: 19-28 [22] 陈慧杰, 严子桢, 齐香玉, 等. 不同绣球品种耐寒性评价及主要指标筛选. 植物资源与环境学报, 2024, 33(2): 41-49 [23] 迟明宏, 程哲, 杨志娟, 等. 50份热带睡莲材料的耐寒性评价. 植物资源与环境学报, 2023, 32(1): 39-49 [24] 任何琴, 孙学广, 袁贵云, 等. 不同铝浓度处理下马尾松体内铝的分配特征. 广西植物, 2024, 44(3): 521-530 [25] Xu X, Wang HR, Zhang B, et al. Micromorphological and physiological responses of two contrasting centipedegrass (Eremochloa ophiuroides (Munro) Hack.) genotypes in response to aluminum toxicity. Journal of Soil Science and Plant Nutrition, 2023, 23: 2174-2189 [26] Liu YJ, Tao JY, Cao J, et al. The beneficial effects of aluminum on the plant growth in Camellia japonica. Journal of Soil Science and Plant Nutrition, 2020, 20: 1799-1809 [27] 陈海霞, 李志奇, 彭尽晖, 等. 铝胁迫对八仙花抗氧化酶系统的影响. 湖南生态科学学报, 2019, 6(4): 7-13 [28] 张雯, 黄益丹, 张鹏超, 等. 甘蓝型油菜耐铝极端品种筛选及耐铝生理机制初步解析. 华中农业大学学报, 2023, 42(6): 154-163 [29] Fu ZP, Jiang XL, Kong D, et al. Flavonol-aluminum complex formation: Enhancing aluminum accumulation in tea plants. Journal of Agricultural and Food Chemistry, 2022, 70: 14096-14108 [30] 吕蒙蒙, 武忆寒, 马志慧, 等. 铝胁迫下生长调节剂对杉木幼苗生长及光合特性的影响. 福建农林大学学报: 自然科学版, 2021, 50(1): 69-78 [31] 吴家怡, 孟丽姣, 袁芳, 等. 铝胁迫下油菜幼苗叶绿素质量分数与光化学效率及碳同化代谢的研究. 西南大学学报: 自然科学版, 2023, 45(5): 33-47 [32] Mariane SO, Sâmara VR, Vanessa KS, et al. Physiolo-gical, nutritional and molecular responses of Brazilian sugarcane cultivars under stress by aluminum. PeerJ, 2021, 9: e11461 [33] 张盛楠, 刘亚敏, 刘玉民, 等. 马尾松幼苗生长及生理特性对铝胁迫的响应. 西北植物学报, 2016, 36(10): 2022-2029 [34] 周家炜, 胡纪龙, 任德娴, 等. 酸胁迫对中华常春藤生理特性的影响. 西南林业大学学报: 自然科学, 2024, 44(6): 47-53 [35] 冯华昊, 王涵, 周建祯, 等. 白三叶耐铝种质筛选及耐铝评价指标分析. 草业学报, 2023, 32(6): 100-111 [36] 李俊钰, 胥晓, 杨鹏, 等. 铝胁迫对青杨雌雄幼苗生理生态特征的影响. 应用生态学报, 2012, 23(1): 45-50 [37] 熊洁, 丁戈, 陈伦林, 等. 铝胁迫对两个油菜品种生理特性及产量构成因素的影响. 甘肃农业大学学报, 2019, 54(5): 43-50 [38] Ahmad ZM, Chen SS, Qi XY, et al. Genome wide ana-lysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. Plant Physiology and Biochemistry, 2024, 216: 109182 [39] Schreiber HS, Jones AH, Lariviere CM, et al. Role of aluminum in red-to-blue color changes in Hydrangea macrophylla sepals. BioMetals, 2011, 24: 1005-1015 |