[1] 魏妍, 易迎霞. 云南七彩花生产业发展对策分析. 中国集体经济, 2022(32): 34-36 [2] 李林, 孙毅, 方海东, 等. 云南七彩花生根瘤菌固氮能力及其与豆血红蛋白含量的关系. 花生学报, 2023, 52(3): 56-62 [3] Chen XP, Cui ZL, Fan MS, et al. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489 [4] Penuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4: 2934 [5] 索炎炎, 张翔, 司贤宗, 等. 氮肥管理与根瘤菌接种模式对花生生长、氮吸收利用及产量的影响. 中国油料作物学报, 2018, 40(6): 866-871 [6] 陆啸飞, 郭洁芸, 王斌, 等. 氮添加对中国陆地植被地上-地下生物量分配的影响. 生态学报, 2024, 44(4): 1313-1323 [7] 戴良香, 张智猛, 张冠初, 等. 氮肥用量对花生氮素吸收与分配的影响. 核农学报, 2020, 34(2): 370-375 [8] Li WB, Zhang HX, Huang GZ, et al. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Global Ecology and Biogeography, 2020, 29: 573-589 [9] Wang CB, Zheng YM, Shen P, et al. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. Journal of Integrative Agriculture, 2016, 15: 432-439 [10] Lyu XC, Wang XL, Xu C, et al. Effects of the concentrations of nitrogen supplied from both or one-half of the dual-root system on the nitrogen fixation of soybean nodules and the distribution of absorbed nitrogen from roots. Journal of Soil Science and Plant Nutrition, 2024, 24: 4786-4795 [11] Gan Y, Stulen I, van Keulen H, et al. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant and Soil, 2004, 258: 281-292 [12] 王晓丽, 王敏, 岳爱琴, 等. 氮素营养和根瘤菌接种对大豆结瘤固氮和生长的影响. 华北农学报, 2022, 37(1): 95-102 [13] 梁福琴, 关大伟, 党蓓蕾, 等. 根瘤菌和氮素对大豆植株特性及产量的影响. 黑龙江农业科学, 2017(8): 28-31 [14] 迟静娴, 徐方继, 刘译阳, 等. 豆科植物结瘤固氮及其分子调控机制的研究进展. 山东农业科学, 2022, 54(3): 155-164 [15] 郭佩, 熊焕烨, 张萍, 等. 氮肥和根瘤菌剂互作对花生氮素吸收、氮代谢及产量的影响. 中国油料作物学报, 2024, 46(3): 644-656 [16] Sachs JL, Kembel SW, Lau AH, et al. In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Applied and Environmental Microbiology, 2009, 75: 4727-4735 [17] Bottomley PJ, Angle JS, Weaver RW. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Pro-perties. New York: John Wiley & Sons, 2020 [18] Senthilkumar M, Amaresan N, Sankaranarayanan A. Plant-Microbe Interactions: Laboratory Techniques. Berlin: Springer-Verlag, 2020 [19] Wardle DA, Walker LR, Bardgett RD. Ecosystem pro-perties and forest decline in contrasting long-term chronosequences. Science, 2004, 305: 509-513 [20] LaRue TA, Child JJ. Sensitive fluorometric assay for leghemoglobin. Analytical Biochemistry, 1979, 92: 11-15 [21] Westgeest AJ, Vasseur F, Enquist BJ, et al. An allometry perspective on crops. New Phytologist, 2024, 244: 1223-1237 [22] Wang W, Li AF, Zhang ZH, et al. Posttranslational modifications: Regulation of nitrogen utilization and signaling. Plant and Cell Physiology, 2021, 62: 543-552 [23] Salvagiotti F, Cassman KG, Specht JE, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 2008, 108: 1-13 [24] Poorter H, Niklas KJ, Reich PB, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phyto-logist, 2012, 193: 30-50 [25] Lyu XC, Xia X, Wang C, et al. Effects of changes in applied nitrogen concentrations on nodulation, nitrogen fixation and nitrogen accumulation during the soybean growth period. Soil Science and Plant Nutrition, 2019, 65: 479-489 [26] 陆保福, 康文娟, 师尚礼, 等. 豆科植物-根瘤菌固氮系统及其碳氮互作. 中国草地学报, 2023, 45(11): 119-135 [27] 杨婷, 钟全林, 李宝银, 等. 3种功能型林木幼苗叶片与细根碳氮磷化学计量特征及其异速关系. 应用生态学报, 2020, 31(12): 4051-4057 [28] 闫帮国, 樊博, 何光熊, 等. 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 2016, 27(10): 3173-3181 [29] Guo P, Ren JY, Shi XL, et al. Optimized nitrogen application ameliorates the photosynthetic performance and yield potential in peanuts as revealed by OJIP chlorophyll fluorescence kinetics. BMC Plant Biology, 2024, 24: 774 [30] Albornoz F. Crop responses to nitrogen over fertilization: A review. Scientia Horticulturae, 2016, 205: 79-83 [31] 郑永美, 杜连涛, 王春晓, 等. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30(3): 961-968 [32] Wang LL, Rubio MC, Xin X, et al. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytologist, 2019, 224: 818-832 [33] Kato K, Kanahama K, Kanayama Y. Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. Journal of Plant Physiology, 2010, 167: 238-241 [34] Garg N, Singla R, Geetanjali. Nitrogen fixation and carbon metabolism in legume nodules. Indian Journal of Experimental Biology, 2004, 42: 138-142 |