[1] 祁敏, 张超. 森林理化参数高光谱遥感反演研究进展. 世界林业研究, 2016, 29(1): 52-57 [2] 徐道青, 刘小玲, 王维, 等. 淹水胁迫下棉花叶片高光谱特征及叶绿素含量估算模型. 应用生态学报, 2017, 28(10): 3289-3296 [3] 倪惠菁, 储昊煜, 苏文会, 等. 经营强度对毛竹林土壤团聚体稳定性和碳氮磷分布的影响. 应用生态学报, 2023, 34(4): 928-936 [4] Madeira AC, Mentions A, Ferreira ME, et al. Relationship between spectroradiometric and chlorophyll mea-surements in green beans. Communications in Soil Science and Plant Analysis, 2000, 31: 631-643 [5] Xu XQ, Lu JS, Zhang N, et al. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 185-196 [6] Wu Q, Zhang YP, Zhao ZW, et al. Estimation of relative chlorophyll content in spring wheat based on multi-temporal UAV remote sensing. Agronomy, 2023, 13: 211 [7] Vermote E, Justice C, Claverie M, et al. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 2016, 185: 46-56 [8] Yang YF, Zhang X, Gao W, et al. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Environmental Science and Pollution Research, 2023, 30: 83628-83642 [9] 赵祥, 刘素红, 王培娟, 等. 基于高光谱数据的小麦叶绿素含量反演. 地理与地理信息科学, 2004, 20(3): 36-39 [10] 梁亮, 杨敏华, 张连蓬, 等. 基于SVR算法的小麦冠层叶绿素含量高光谱反演. 农业工程学报, 2012, 28(20): 162-171 [11] 朱蕾, 黄敬峰. 山区县域尺度降水量空间插值方法比较. 农业工程学报, 2007, 23(7): 80-85 [12] Xia CF, Zhou WW, Shu QT, et al. Regional scale inversion of chlorophyll content of Dendrocalamus giganteus by multi-source remote sensing. Forests, 2024, 15: 1211 [13] Wang Y, Wang H, Wang C, et al. Co-Kriging-guided interpolation for mapping forest aboveground biomass by integrating global ecosystem dynamics investigation and Sentinel-2 data. Remote Sensing, 2024, 16: 2913 [14] Njoku EA, Akpan PE, Effiong AE, et al. The effects of station density in geostatistical prediction of air temperatures in Sweden: A comparison of two interpolation techniques. Resources, Environment and Sustainability, 2023, 11: 100092 [15] Shah SH, Angel Y, Houborg R, et al. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 2019, 11: 920 [16] Darvishzadeh R, Matkan AA, Ahangar AD. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5: 1222-1230 [17] 刘文雅, 潘洁. 基于神经网络的马尾松叶绿素含量高光谱估算模型. 应用生态学报, 2017, 28(4): 1128-1136 [18] Ta N, Chang QR, Zhang YM. Estimation of apple tree leaf chlorophyll content based on machine learning methods. Remote Sensing, 2021, 13: 3902 [19] 李兴平. 云南新平县雪茄烟种植现状及产业发展建议. 农业工程技术, 2022, 42(32): 18-20 [20] 王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015: 131-132 [21] Liang MY, González-Roglich M, Roehrdanz P, et al. Assessing protected area’s carbon stocks and ecological structure at regional-scale using GEDI lidar. Global Environmental Change, 2023, 78: 102621 [22] Xu L, Lai HY, Yu JG, et al. Carbon storage estimation of Quercus aquifolioides based on GEDI spaceborne LiDAR Data and Landsat 9 images in Shangri-La. Sustai-nability, 2023, 15: 11525 [23] 周文武, 舒清态, 胥丽, 等. 滇西北森林郁闭度估测模型: 基于全球生态系统动力学调查多波束激光雷达数据. 生态学报, 2024, 44(8): 3525-3539 [24] 马战林, 刘昌华, 薛华柱, 等. GEE环境下融合主被动遥感数据的冬小麦识别技术. 农业机械学报, 2021, 52(9): 195-205 [25] Wu Q, Jin Y, Fan H. Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI data. International Journal of Remote Sensing, 2016, 37: 4712-4730 [26] 王柯人, 罗文秀, 舒清态, 等. 龙竹人工林的含水率分析及地上生物量回归模型构建. 西南林业大学学报: 自然科学, 2021, 41(6): 168-174 [27] Goovaerts P. Geostatistics for Natural Resources Evaluation. Oxford, UK: Oxford University Press, 1997 [28] Chiles JP, Delfiner P. Geostatistics: Modeling Spatial Uncertainty. New York, USA: John Wiley & Sons, 2012 [29] Wu J, Chen XY, Zhang H, et al. Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Techno-logy, 2019, 17: 26-40 [30] Breiman L. Random forests. Machine Learning, 2001, 45: 5-32 [31] 仉文岗, 唐理斌, 陈福勇, 等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度. 应用基础与工程科学学报, 2021, 29(5): 1186-1200 [32] 龚越, 罗小芹, 王殿海, 等. 基于梯度提升回归树的城市道路行程时间预测. 浙江大学学报: 工学版, 2018, 52(3): 453-460 [33] 纪昌明, 周婷, 向腾飞, 等. 基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用. 电力自动化设备, 2014, 34(3): 125-131 [34] Giustini F, Ciotoli G, Rinaldini A, et al. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 2019, 661: 449-464 [35] 周文武, 舒清态, 王书伟, 等. 基于多源遥感数据协同的滇西北森林郁闭度估测. 应用生态学报, 2023, 34(7): 1806-1816 [36] 朱阿兴, 闾国年, 周成虎, 等. 地理相似性: 地理学的第三定律?地球信息科学学报, 2020, 22(4): 673-679 [37] Song HY, Xi L, Shu QT, et al. Estimate forest aboveground biomass of mountain by ICESat-2/ATLAS data interacting cokriging. Forests, 2022, 14: 13 [38] 曲怡铃, 唐燕, 周忠生, 等. 基于无人机可见光影像的毛竹相对叶绿素含量反演研究. 江西农业大学学报, 2022, 44(1): 139-150 [39] 刘小杰, 宋凌寒, 张仓皓, 等. 毛竹叶片叶绿素含量估算模型对比研究. 北京林业大学学报, 2023, 45(10): 70-80 [40] Zhu XX, Nie S, Wang C, et al. Consistency analysis of forest height retrievals between GEDI and ICESat-2. Remote Sensing of Environment, 2022, 281: 113244 |