[1] 于贵瑞, 陈智, 杨萌, 等. 大尺度陆地生态系统科学研究的理论基础及其技术体系之探讨. 应用生态学报, 2021, 32(2): 377-391 [2] IPCC. 2021: Summmary for policymakers// Seneviratne SI, Zhang X, Adnan M, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergo-vernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2021: 1513-1766 [3] Wang X, Zhang Q, Zhang ZJ, et al. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta, 2023, 2: e106 [4] 李怡佳, 马俊伟, 李玉倩, 等. 土壤微生物群落对全球气候变化响应的研究进展. 微生物学通报, 2023, 50(4): 1700-1719 [5] 陶冬雪, 李文瑾, 杨恬, 等. 降水变化和养分添加对呼伦贝尔草甸草原土壤呼吸的影响. 生态学杂志, 2022, 41(3): 465-472 [6] 杨新宇, 林笠, 李颖, 等. 青藏高原高寒草甸土壤物理性质及碳组分对增温和降水改变的响应. 北京大学学报: 自然科学版, 2017, 53(4): 765-774 [7] Chen X, Wang YJ, Wang Y, et al. A natural moisture gradient affects soil fungal communities on the south shore of Hulun Lake, Inner Mongolia, China. Journal of Fungi, 2023, 9: 549 [8] 朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 2019, 30(12): 4323-4332 [9] Cline LC, Zak DR. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 2015, 96: 3374-3385 [10] Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Bio-logy Reviews, 2015, 79: 243-262 [11] 李文卿. 混交阔叶树对亚热带针叶林根际土壤碳氮磷动态及微生物特性的影响. 硕士论文. 南昌: 江西农业大学, 2021 [12] 陆梅, 田昆, 孙向阳, 等. 纳帕海典型湿地土壤真菌群落特征的积水条件和干湿季节变化. 林业科学, 2018, 54(2): 98-109 [13] 赵银. 青藏高原高寒草甸土壤微生物群落对增温和降雨变化的响应. 硕士论文. 兰州: 兰州大学, 2019 [14] Kira T. Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research, 1991, 6: 185-200 [15] 胡仪. 亚热带四种森林凋落叶调控土壤氮周转. 硕士论文. 福州: 福建师范大学, 2023 [16] 曹平丽, 孙思怡, 卢胜旭, 等. 亚热带米槠天然林土壤有机氮组分对模拟氮沉降的响应. 水土保持学报, 2023, 37(4): 243-249 [17] 纪永康, 马楠, 张慧, 等. 降水季节性分配对亚热带森林土壤氮矿化的影响. 应用生态学报, 2024, 35(1): 186-194 [18] 袁硕, 杨智杰, 元晓春, 等. 降雨隔离和温度增加对杉木幼林土壤可溶性碳氮的影响. 应用生态学报, 2018, 29(7): 2217-2223 [19] 吕茂奎, 谢锦升, 江淼华, 等. 米槠常绿阔叶次生林和杉木人工林穿透雨和树干径流可溶性有机质浓度和质量的比较. 应用生态学报, 2014, 25(8): 2201-2208 [20] Cleveland CC, Reed SC, Townsend AR. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 2006, 87: 492-503 [21] 吴波波, 郭剑芬, 吴君君, 等. 采伐剩余物对林地表层土壤生化特性和酶活性的影响. 生态学报, 2014, 34(7): 1645-1653 [22] 刘小飞, 陈仕东, 熊德成, 等. 高频观测的土壤异养呼吸昼夜变化. 亚热带资源与环境学报, 2014, 9(1): 92-94 [23] 李帅军, 郭剑芬, 吴东梅, 等. 隔离降雨对米槠天然林土壤微生物生物量和酶活性的影响. 亚热带资源与环境学报, 2018, 13(1): 17-25 [24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 12-14 [25] 吴玥, 赵盼盼, 林开淼, 等. 戴云山黄山松林土壤碳组分的海拔变化特征及影响因素. 生态学报, 2020, 40(16): 5761-5770 [26] Jones DL, Willett VB. Experimental evaluation of me-thods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 [27] Huang ZQ, Wan XH, He ZM, et al. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Bio-logy and Biochemistry, 2013, 62: 68-75 [28] 周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 2017, 37(1): 127-135 [29] Rainer GJ. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology and Biochemistry, 1996, 28: 25-31 [30] Rousk J, Bååth E, Brookes PC, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010, 4: 1340-1351 [31] Robert CE. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10: 996-998 [32] Stackebrandt E, Goebel BM. A place for DNA-DNA reassociation and 16S ribosomal-RNA sequence-analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 1994, 44: 846-849 [33] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41: 590-596 [34] Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73: 5261-5267 [35] 车子涵. 青海湖河源湿地土壤微生物群落对模拟增温与降水变化的响应. 硕士论文. 西宁: 青海师范大学, 2023 [36] Kaiser M, Kleber M, Berhe AA. How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biology and Biochemistry, 2015, 80: 324-340 [37] 武丹丹, 井新, 林笠, 等. 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报: 自然科学版, 2016, 52(5): 959-966 [38] Mao C, Qi LH. Research advances on nitrogen transformation and cycling in forest soil. World Forestry Research, 2015, 28: 10-15 [39] Aranibar JN, Otter L, Macko SA, et al. Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Global Change Biology, 2004, 10: 359-373 [40] 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理. 生态学报, 2003, 23(5): 972-978 [41] Ren CJ, Zhao FZ, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology and Biochemistry, 2017, 115: 1-10 [42] Yang A, Song B, Zhang WX, et al. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biology and Biochemistry, 2024, 193: 109397 [43] 董学德, 高鹏, 李腾, 等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响. 生态学报, 2021, 41(6): 2315-2325 [44] 陈秀波, 朱德全, 赵晨晨, 等. 不同林型红松林土壤真菌群落组成和多样性. 土壤学报, 2019, 56(5): 1221-1234 [45] 彭辉, 周红敏, 张弓乔, 等. 不同林龄红豆树土壤真菌群落组成和多样性. 中南林业科技大学学报, 2021, 41(11): 129-135 [46] Tang YS, Wang L, Jia JW, et al. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover. Soil Biology and Biochemistry, 2011, 43: 638-646 [47] Gargallo-Garriga A, Preece C, Sardans J, et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports, 2018, 8: 12696 [48] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22: 226-239 |