欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 2246-2256.doi: 10.13287/j.1001-9332.202507.007

• 综合评述 • 上一篇    

红蓝光对植物光合碳同化和生长发育的影响研究进展

殷丛培1, 石昭瑾1, 田成1, 陈聪聪1, 李东晓1, 董伟欣2, 张月辰1*   

  1. 1河北农业大学农学院, 省部共建华北作物改良与调控国家重点实验室/河北省作物生长调控实验室, 河北保定 071001;
    2河北开放大学, 石家庄 050000
  • 收稿日期:2025-02-19 接受日期:2025-05-13 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: zhangyc1964@126.com
  • 作者简介:殷丛培, 女, 1996年生, 博士研究生。主要从事作物生理生态学研究。E-mail: Ycongpei2015@163.com
  • 基金资助:
    国家自然科学基金项目(32201908)、河北省三三三人才项目(C2024096)、“十四五”国家重点研发计划项目(2023YFD2301505-02)、河北省自然科学基金项目(C2021204045)和河北省现代农业产业技术体系建设专项资金(HBCT2024070203)

Effects of red and blue light on photosynthetic carbon assimilation and growth-development in plants: A review

YIN Congpei1, SHI Zhaojin1, TIAN Cheng1, CHEN Congcong1, LI Dongxiao1, DONG Weixin2, ZHANG Yuechen1*   

  1. 1State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Agricultural University of Hebei, Baoding 071001, Hebei, China;
    2Hebei Open University, Shijiazhuang 050000, China
  • Received:2025-02-19 Accepted:2025-05-13 Online:2025-07-18 Published:2026-01-18

摘要: 红光和蓝光是植物光合色素吸收的主要光谱,通过光敏色素(PHY)和隐花色素(CRY)/向光素(PHOT)介导的信号通路,协同调控植物的光合碳同化与生长发育。本文综述了红蓝光对植物光合特性及生长发育的调控机制。在光合特性方面,红光通过光敏色素B(PHYB)激活叶绿素合成基因(HEMA1、CHLH),提高叶绿素b含量,但抑制类胡萝卜素积累;蓝光通过隐花色素1/2(CRY1/2)上调PSYPDS等基因,促进类胡萝卜素合成。红蓝光组合通过优化栅栏/海绵组织厚度及气孔导度,显著增强光合速率和电子传递效率,其中蓝光可缓解红光诱导的PSⅡ光抑制,提高PSⅡ 最大光化学效率(Fv/Fm)和PSⅡ 实际光化学效率(ΦPSⅡ)。在生长发育方面,红光通过PHY-生长素途径促进茎伸长,但抑制根系活力;蓝光通过CRY-PIN3信号增强根系吸收面积并抑制下胚轴徒长。红蓝光协同调控开花时间,红光通过光敏色素 B-光敏色素互作因子样蛋白-CO蛋白复合体(PHYB-PHL-CO)延迟开花,而蓝光通过隐花色素 2/CO蛋白-FT蛋白通路(CRY2/CO-FT)促进开花,组合光可延长花期并提高花器官品质。本文还综述了红蓝光在植物工厂、育种加速、工厂化育苗和航天育种等多个领域的应用。当前仍需解析光受体交叉调控的分子网络,建立多因子耦合模型,并开发作物特异性光需求数据库。未来应结合基因编辑与智能光控技术,定向优化光合-形态协同机制,推动设施农业向高效化、智能化发展,为现代农业高光效、优质栽培以及高产育种实践提供理论支撑和技术参考。

关键词: 红光, 蓝光, 光合碳同化, 植物生长发育

Abstract: Red and blue light are the primary spectra absorbed by photosynthetic pigments in plants. Through the signal pathways mediated by phytochromes (PHY) and cryptochromes (CRY)/phototropins (PHOT), they coope-ratively regulate photosynthetic carbon assimilation, and plant growth and development. We reviewed the regulatory mechanisms of red and blue light on photosynthetic characteristics and plant growth and development. Red light activates chlorophyll synthesis genes (HEMA1, CHLH) through phytochrome B (PHYB), increases chlorophyll b content but inhibits carotenoid accumulation. Blue light upregulates genes such as PSY and PDS through cryptochromes1/2 (CRY1/2), and promotes carotenoid synthesis. The combination of red and blue light significantly enhances photosynthetic rate and electron transfer efficiency by optimizing the thickness of palisade/spongy tissue and stomatal conductance. Blue light can alleviate the photoinhibition of PSⅡinduced by red light, increasing the maximum photochemical efficiency (Fv/Fm) and actual photochemical efficiency (ΦPSⅡ) of PSⅡ. In terms of growth and development, red light promotes stem elongation through the PHY-auxin pathway but inhibits root activity, while blue light enhances root absorption area and inhibits hypocotyl elongation through the CRY-PIN3 signaling pathway. Red and blue light cooperatively regulate flowering time. Red light delays flowering through the PHYB-PHYL-CO protein complex, while blue light promotes flowering through the CRY2/CO-FT protein pathway. Combined blue and red light can extend the flowering period and improve the quality of floral organs. We reviewed the applications of red and blue light in multiple fields such as plant factories, accelerated breeding, factory seedling cultivation, and space breeding. Currently, it is necessary to analyze the molecular networks of cross-regulation of photoreceptors, establish multi-factor coupling models, and develop crop-specific light requirement databases. In the future, combined with gene editing and intelligent light control technologies, the photosynthesis-morphogenesis coordination mechanism should be optimized directionally to promote the development of facility agriculture towards high efficiency and intelligence, and to provide theoretical support and technical references for high light efficiency, high-quality cultivation, and high-yield breeding practices in modern agriculture.

Key words: red light, blue light, photosynthetic carbon assimilation, plant growth and development