[1] Wang WL, Sun JG. Estimation of soil salinity using sate-llite-based variables and machine learning methods. Earth Science Informatics, 2024, 17: 5049-5061 [2] 陆宝金, 田生昌, 左忠, 等. 盐渍化土地可持续利用研究综述及展望. 宁夏大学学报: 自然科学版, 2023, 44(1): 79-88 [3] Sirpa-Poma JW, Satgé F, Zolá RP, et al. Complementarity of Sentinel-1 and Sentinel-2 data for soil salinity monitoring to support sustainable agriculture practices in the central Bolivian Altiplano. Sustainability, 2024, 16: 6200 [4] Wang JQ, Peng J, Li HY, et al. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas, China. Remote Sensing, 2021, 13: 305 [5] Zhou MG, Li YH. Digital mapping and scenario prediction of soil salinity in coastal lands based on multi-source data combined with machine learning algorithms. Remote Sensing, 2024, 16: 2681 [6] Isoaho A, Ikkala L, Pákkilá L, et al. Multi-sensor sate-llite imagery reveals spatiotemporal changes in peatland water table after restoration. Remote Sensing of Environment, 2024, 306: 114144 [7] Du DY, He BZ, Luo XF, et al. Spatio-temporal variation analysis of soil salinization in the Ougan-Kuqa River Oasis of China. Sustainability, 2024, 16: 2706 [8] Mzid N, Boussadia O, Albrizio R, et al. Salinity pro-perties retrieval from Sentinel-2 satellite data and machine learning algorithms. Agronomy, 2023, 13: 716 [9] 李小雨, 贾科利, 魏慧敏, 等. 基于随机森林算法的土壤含盐量预测. 干旱区研究, 2023, 40(8): 1258-1267 [10] Wang CQ, Kuzyakov Y. Soil organic matter priming: The pH effects. Global Change Biology, 2024, 30: e17349 [11] Wang F, Han LL, Liu LL, et al. Advancements and perspective in the quantitative assessment of soil salinity utilizing remote sensing and machine learning algorithms: A review. Remote Sensing, 2024, 16: 4812 [12] Ge XY, Ding JL, Teng DX, et al. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena, 2022, 212: 106054 [13] Jia PP, He W, Hu Y, et al. Inversion of coastal cultivated soil salt content based on multi-source spectra and environmental variables. Soil and Tillage Research, 2024, 241: 106124 [14] 谭旺, 刘义, 董建华, 等. 基于Sentinel-2卫星影像和土壤变量的盐渍化土壤水溶性盐基离子含量反演. 中国农村水利水电, 2024(7): 210-217 [15] Mohamed SA, Metwaly MM, Metwalli MR, et al. Inte-grating active and passive remote sensing data for mapping soil salinity using machine learning and feature selection approaches in arid regions. Remote Sensing, 2023, 15: 1751 [16] Jia PP, Zhang JH, He W, et al. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sensing, 2022, 14: 2602 [17] 施光耀, 杨思琪, 张劲松, 等. 基于机器学习算法的高海拔地区臭氧影响因素重要性分析. 宁夏大学学报: 自然科学版, 2024, 45(2): 196-202 [18] Wang N, Chen SC, Huang JY, et al. Global soil salinity estimation at 10 m using multi-source remote sensing. Journal of Remote Sensing, 2024, 4: 0130 [19] Ma GL, Ding JL, Han LJ, et al. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2021, 2: 177-188 [20] Tola D, Satgé F, Zolá RP, et al. Soil salinity mapping of plowed agriculture lands combining radar Sentinel-1 and optical Sentinel-2 with topographic data in machine learning models. Remote Sensing, 2024, 16: 3456 [21] Wang ZY, Wu W, Liu HB. Comparing soil pH mapping from multi-temporal planetscope and Sentinel-2 data across land use types. Remote Sensing, 2025, 17: 189 [22] Pan MY, Xia BS, Huang WB, et al. PM2.5 concentration prediction model based on random forest and SHAP. International Journal of Pattern Recognition and Artificial Intelligence, 2024, 38: 2452012 [23] Jia PP, Zhang JH, Liang YN, et al. The inversion of arid-coastal cultivated soil salinity using explainable machine learning and Sentinel-2. Ecological Indicators, 2024, 166: 112364 [24] Zhang JH, Ding QD, Wang YJ, et al. Soil quality assessment and constraint diagnosis of salinized farmland in the Yellow River irrigation area in northwestern China. Geoderma Regional, 2023, 34: e00684 [25] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [26] Douaoui AEK, Nicolas H, Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 2006, 134: 217-230 [27] Bannari A, Guedon AM, El-Harti A, et al. Characte-rization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Communications in Soil Science and Plant Analysis, 2008, 39: 2795-2811 [28] Scudiero E, Skaggs TH, Corwin DL. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Regional, 2014, 2-3: 82-90 [29] Alhammadi MS, Glenn EP. Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. International Journal of Remote Sensing, 2008, 29: 1745-1765 [30] Peng J, Biswas A, Jiang QS, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 2018, 337: 1309-1319 [31] 刘瑞亮, 贾科利, 李小雨, 等. 组合光学和微波遥感的耕地土壤含盐量反演. 干旱区地理, 2024, 47(3): 433-444 [32] 马驰. 基于Sentinel-1双极化雷达影像的土壤含盐量反演. 农业工程学报, 2018, 34(2): 153-158 [33] Harris I, Osborn TJ, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 2020, 7: 109 [34] Xu ZH, Sun H, Zhang T, et al. The high spatial resolution drought response index (HiDRI): An integrated framework for monitoring vegetation drought with remote sensing, deep learning, and spatiotemporal fusion. Remote Sensing of Environment, 2024, 312: 114324 [35] Chen YQ, Shi TZ, Li QP, et al. Mapping soil properties in tropical rainforest regions using integrated UAV-based hyperspectral images and LiDAR points. Forests, 2024, 15: 2222 [36] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning, 2006, 63: 3-42 [37] Ahn JM, Kim J, Kim K. Ensemble machine learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins, 2023, 15: 608 [38] 丁启东, 王怡婧, 张俊华, 等. 利用CARS算法联合协变量估算盐碱农田土壤水分和有机质含量. 应用生态学报, 2024, 35(5): 1321-1330 [39] Jiang ZH, Hao Z, Ding JL, et al. Weighted variable optimization-based method for estimating soil salinity using multi-source remote sensing data: A case study in the Weiku Oasis, Xinjiang, China. Remote Sensing, 2024, 16: 3145 [40] Demir S, Sahin EK. Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost. Acta Geotechnica, 2023, 18: 3403-3419 [41] 黄华雨, 丁启东, 张俊华, 等. 基于地面高光谱的宁夏银北地区农田不同土层盐碱化信息反演. 应用生态学报, 2024, 35(11): 3073-3084 [42] 葛建坤, 雷国相, 陈皓锐, 等. 基于SHAP重要性排序和机器学习算法的灌区渠道调度流量预测. 农业工程学报, 2023, 39(13): 113-122 [43] Brady NC, Weil RR. 李保国, 徐建明, 译. 土壤学与生活. 北京: 科学出版社, 2019 [44] Liu JH, Hao Z, Ding JL, et al. Ensemble machine-learning-based framework for estimating surface soil moisture using Sentinel-1/2 data: A case study of an arid oasis in China. Land, 2024, 13: 1635 [45] Geng J, Tan QY, Lv JW, et al. Assessing spatial variations in soil organic carbon and C:N ratio in northeast China’s black soil region: Insights from Landsat-9 sate-llite and crop growth information. Soil and Tillage Research, 2024, 235: 105897 [46] Shokati H, Mashal M, Noroozi A, et al. Random forest-based soil moisture estimation using Sentinel-2, Landsat-8/9, and UAV-based hyperspectral data. Remote Sensing, 2024, 16: 1926 [47] 张伟, 杜培军, 郭山川, 等. 改进型遥感生态指数及干旱区生态环境评价. 遥感学报, 2023, 27(2): 299-317 |