[1] Smith AT, Xie Y. A Guide to the Mammals of China. Princeton, NJ, USA: Princeton University Press, 2008 [2] 曾晓明, 杨莹, 巩匆然, 等. 三江源地区藏野驴、藏原羚栖息地适宜性评价及动态趋势. 四川动物, 2023, 42(4): 371-380 [3] 孟楠. 气候变化和放牧活动对青藏高原草地稳定性的影响研究. 博士论文. 北京: 中国科学院大学, 2023 [4] 殷宝法, 于智勇, 杨生妹, 等. 青藏公路对藏羚羊、藏原羚和藏野驴活动的影响. 生态学杂志, 2007, 26(6): 810-816 [5] 黄青东智, 陈刘阳, 李尚鹏, 等. 道路对三江源国家公园黄河源园区藏野驴和藏原羚种群数量及其栖息地的影响. 兽类学报, 2022, 42(1): 34-48 [6] Ito TY, Lhagvasuren B, Tsunekawa A, et al. Fragmentation of the habitat of wild ungulates by anthropogenic barriers in Mongolia. PLoS One, 2013, 8(2): e56995 [7] 李晓晓. 可可西里同域分布藏羚与藏原羚生境选择研究. 硕士论文. 南京: 南京农业大学, 2011 [8] 蒋志刚, 李立立, 胡一鸣, 等. 青藏高原有蹄类动物多样性和特有性: 演化与保护. 生物多样性, 2018, 26(2): 158-170 [9] Harris RB, Miller DJ. Overlap in summer habitats and diets of Tibetan Plateau ungulates. Mammalia, 1995, 59: 197-212 [10] Li ZQ, Jiang ZG, Li CW. Dietary overlap of Przewalski’s gazelle, Tibetan gazelle, and Tibetan sheep on the Qinghai-Tibet Plateau. Journal of Wildlife Management, 2008, 72: 944-948 [11] 连新明, 苏建平, 张同作, 等. 藏原羚集群行为的初步研究. 生物多样性, 2004, 12(5): 488-493 [12] 邵全琴, 郭兴健, 李愈哲, 等. 无人机遥感的大型野生食草动物种群数量及分布规律研究. 遥感学报, 2018, 22(3): 497-507 [13] 李欣海, 郜二虎, 李百度, 等. 用物种分布模型和距离抽样估计三江源藏野驴、藏原羚和藏羚羊的数量. 中国科学: 生命科学, 2019, 49(2): 151-162 [14] 刘振生, 高惠, 滕丽微, 等. 基于MaxEnt模型的贺兰山岩羊生境适宜性评价. 生态学报, 2013, 33(22): 7243-7249 [15] Thorn JS, Nijman V, Smith D, et al. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises. Diversity and Distributions, 2009, 15: 289-298 [16] Rushton SP, Ormerod SJ, Kerby G. New paradigms for modelling species distributions? Journal of Applied Eco-logy, 2004, 41: 193-200 [17] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法. 生态学报, 2015, 35(2): 557-567 [18] 崔绍朋, 罗晓, 李春旺, 等. 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 2018, 26(2): 171-176 [19] 庄鸿飞, 秦浩, 王伟, 等. 基于MaxEnt模型的云南红豆杉潜在适宜分布预测. 山西大学学报: 自然科学版, 2018, 41(1): 233-240 [20] Clements GR, Rayan DM, Aziz SA, et al. Predicting the distribution of the Asian tapir in Peninsular Malaysia using maximum entropy modeling. Integrative Zoology, 2012, 7: 400-406 [21] Moreno R, Zamora R, Molina JR, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (MaxEnt). Ecological Informatics, 2011, 6: 364-370 [22] Reid S, Díaz IA, Armesto JJ, et al. Importance of native bamboo for understory birds in Chilean temperate forests. Auk, 2004, 121: 515-525 [23] 佘延娣, 周华坤, 张中华, 等. 气候变化背景下羌活在三江源的适宜分布. 生态环境学报, 2021, 30(10): 2033-2041 [24] Zhang L, Li Q, Kou XJ, et al. Distributions of two native ungulates at the third pole are highly sensitive to global warming. Global Ecology and Conservation, 2022, 39: e02292 [25] 付梦娣, 田俊量, 朱彦鹏, 等. 三江源国家公园功能分区与目标管理. 生物多样性, 2017, 25(1): 71-79 [26] 郭杰, 刘小平, 张琴, 等. 基于Maxent模型的党参全球潜在分布区预测. 应用生态学报, 2017, 28(3): 992-1000 [27] 宋花玲, 贺佳, 黄品贤, 等. ROC曲线下面积估计的参数法与非参数法的应用研究. 第二军医大学学报, 2006, 27(7): 726-728 [28] Wang JJ, Cao B, Bai CK, et al. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on MaxEnt modeling and GIS. Bulletin of Botanical Research, 2014, 34: 642-649 [29] Elith J, Phillips SJ, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17: 43-57 [30] Carey HR. Camera-trapping: A novel device for wild animal photography. Journal of Mammalogy, 1926, 7: 278-281 [31] 蒋志刚, 马克平. 保护生物学的现状、挑战和对策. 生物多样性, 2009, 17(2): 107-116 [32] Pearson RG, Raxworthy CJ, Nakamura M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 2007, 34: 102-117 [33] Schaller GB. Wildlife of the Tibetan Steppe. Chicago, IL, USA: University of Chicago Press, 1998: 236-236 [34] Migmar W, Joseph LF. Habitat selection by sympatric chiru and Tibetan gazelle in the Aru Basin, Changtang Nature Reserve, Tibet Autonomous Region, China. Acta Theriologica Sinica, 2008, 28: 225-231 [35] 许茜, 李奇, 陈懂懂, 等. 三江源土地利用变化特征及因素分析. 生态环境学报, 2017, 26(11): 1836-1843 [36] 颜忠诚, 陈永林. 动物的生境选择. 生态学杂志, 1998, 17(2): 43-49 |