欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (9): 2712-2718.doi: 10.13287/j.1001-9332.202509.003

• 研究论文 • 上一篇    下一篇

中国特有植物翅果油树种群遗传多样性与遗传结构

赵艳芬1*, 田浩文2   

  1. 1山西财经大学资源环境学院, 太原 030006;
    2新疆农业大学生命科学学院, 乌鲁木齐 830052
  • 收稿日期:2025-04-11 接受日期:2025-07-02 出版日期:2025-09-18 发布日期:2026-04-18
  • 通讯作者: *E-mail: zhaoyanfenhappy@163.com
  • 作者简介:赵艳芬,女,1987年生,博士研究生。主要从事珍稀濒危植物保护研究。E-mail:zhaoyanfenhappy@163.com
  • 基金资助:
    国家自然科学基金项目(32171658)和山西省基础研究计划项目(20210302124500)

Genetic diversity and genetic structure of the endemic plant Elaeagnus mollis populations in China

ZHAO Yanfen1*, TIAN Haowen2   

  1. 1College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China;
    2College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2025-04-11 Accepted:2025-07-02 Online:2025-09-18 Published:2026-04-18

摘要: 翅果油树属国家二级保护植物,研究其种群的遗传多样性和遗传结构可为该物种有效保护提供科学依据。本研究基于基因组重测序技术,对山西、陕西和河南三省分布的24个翅果油树自然种群(162个个体)进行单核苷酸多态性检测。采用群体观测杂合度(Ho)、期望杂合度(He)、核苷酸多态性、次等位基因频率以及连锁不平衡衰减等指标分析种群遗传多样性;通过主成分分析、系统发育树和ADMIXTURE软件等分析种群遗传结构。结果表明: 翅果油树种群具有较高的遗传多样性水平(Ho=0.294~0.486,He=0.316~0.367)。种群聚类和系统发育树分析表明,24个种群可划分为东部组、南部组和秦岭组3个遗传支系,其中,东部组主要由河南、山西平陆县、绛县和翼城县的种群组成,南部组主要由山西乡宁县和稷山县的种群组成,而秦岭组则由秦岭周边的种群组成。分子方差分析显示,74.2%的遗传变异来源于种群内部。山地地形造成的隔离生境和环境异质性可能对翅果油树的种群遗传分化具有重要促进作用。综上所述,根据种群遗传特征,建议将东部组、南部组和秦岭组作为3个不同的遗传单元进行针对性保护。

关键词: 翅果油树, 特有植物, 遗传结构, 遗传多样性, 基因组重测序

Abstract: Elaeagnus mollis is a nationally protected species under Category Ⅱ conservation status in China. Understanding the genetic diversity and genetic structure can provide a scientific basis for the effective conservation of E. mollis. In this study, we employed whole-genome resequencing to identify single nucleotide polymorphisms across 162 individuals from 24 natural populations of E. mollis distributed in Shanxi, Shaanxi, and Henan provinces. Genetic diversity parameters, including observed heterozygosity (Ho), expected heterozygosity (He), nucleotide diversity, minor allele frequency, and linkage disequilibrium decay, were quantified. Population genetic structure was examined by principal component analysis, phylogenetic tree construction, and ADMIXTURE software. The results showed that genetic diversity of E. mollis was high across populations (Ho=0.294-0.486, He=0.316-0.367). Population clustering and phylogenetic tree analysis revealed that the 24 populations could be divided into three genetic lineages: the Eastern, Southern, and Qinling groups. The Eastern group mainly consisted of populations from Henan Province and the Pinglu, Jiangxian, and Yicheng counties of Shanxi Province. The Southern group primarily comprised populations from Xiangning and Jishan counties in Shanxi Province, while the Qinling group included populations from areas surrounding the Qinling Mountains. Analysis of molecular variance showed that 74.2% of the genetic variation occurred within populations. The isolated habitats and environmental heterogeneity caused by mountainous terrain may contribute to population genetic differentiation in E. mollis. Based on population genetic characteristics, we recommended that the Eastern, Southern, and Qinling groups should be treated as three different genetic units for targeted protection.

Key words: Elaeagnus mollis, endemic plant, genetic structure, genetic diversity, genome resequencing