[1] Rogers K, Krauss WK. Moving from generalisations to specificity about mangrove-saltmarsh dynamics. Wetlands, 2019, 39: 1155-1178 [2] Spivak CA, Sanderman J, Bowen LJ, et al. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 2019, 12: 685-692 [3] Wang FM, Sanders CJ, Santos IR, et al. Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 2021, 8: nwaa296 [4] Davidson NC, Finlayson CM. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research, 2019, 70: 1195-1200 [5] FAO. Global forest resources assessment 2020: Main report[EB/OL]. (2020-11-18) [2025-01-08]. https://openknowledge.fao.org/handle/20.500.14283/ca9825en [6] Murdiyarso D, Purbopuspito J, Kauffman JB, et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 2015, 5: 1089-1092 [7] Ren C, Wang Z, Zhang Y, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984-2016. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101902 [8] Barbier BE, Hacker DS, Kennedy C, et al. The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011, 81: 169-193 [9] Furukawa Y, Inubushi K, Ali M, et al. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutrient Cycling in Agroecosystems, 2005, 71: 81-91 [10] Donato CD, Kauffman BJ, Murdiyarso D, et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 2011, 4: 293-297 [11] Pendleton L, Donato DC, Murray BC, et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One, 2012, 7: e43542 [12] Li Y, Qiu JH, Li YF, et al. Assessment of blue carbon storage loss in coastal wetlands under rapid reclamation. Sustainability, 2018, 10: 2818 [13] Kauffman JB, Chris H, Jennifer N, et al. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 2014, 24: 518-527 [14] Hargreaves JA. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 1998, 166: 181-212 [15] Alltech. 2021 Global feed survey[EB/OL]. (2021-01-26) [2025-01-08]. https://www.alltech.com/sites/default/files/2021-11/2021_alltech_global_feed_survey-ENG_0.pdf [16] Boyd CE, Wood CW, Chaney PL, et al. Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 2010, 158: 2537-2540 [17] Zhang HF, Zheng YC, Wang XC, et al. Characterization and biogeochemical implications of dissolved orga-nic matter in aquatic environments. Journal of Environmental Management, 2021, 294: 113041 [18] Kellerman AM, Guillemette F, Podgorski DC, et al. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environmental Science and Technology, 2018, 52: 2538-2548 [19] Guo ZY, Wang YH, Wan ZM, et al. Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls. Global Ecology and Biogeography, 2020, 29: 2159-2175 [20] Gregorich EG, Liang BC, Drury CF, et a1. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology and Biochemistry, 2000, 32: 581-587 [21] Zhao D, Dong JY, Ji SP, et al. Effects of contemporary land use types and conversions from wetland to paddy field or dry land on soil organic carbon fractions. Sustainability, 2020, 12: 2094 [22] Lin SY, Zhou YX, Wang WQ, et al. Losses and destabilization of soil organic carbon stocks in coastal wetlands converted into aquaculture ponds. Global Change Biology, 2024, 30: e17480 [23] Dong YH, Yuan JJ, Li JJ, et al. Conversion of natural coastal wetlands to mariculture ponds dramatically decreased methane production by reducing substrate availability. Agriculture, Ecosystems and Environment, 2023, 356: 108646 [24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [25] 姜静宜, 孙晓新, 王宪伟, 等. 大兴安岭多年冻土泥炭地土壤水可溶性有机碳夏秋季节变化特征及其影响因素. 应用生态学报, 2023, 34(9): 2413-2420 [26] 龙云川, 王龙燕, 胡菁, 等. 基于UV-Vis和EEM-PARAFAC的草海沉积物DOM时空分布特征. 环境科学研究, 2024, 37(12): 2698-2709 [27] 张宇辉, 陈娟, 胥超, 等. 增温对亚热带格氏栲天然林凋落物可溶性有机质数量和结构的影响. 应用生态学报, 2023, 34(4): 946-954 [28] Shu YR, Kong FM, He Y, et al. Machine learning-assisted source tracing in domestic-industrial wastewater: A fluorescence information-based approach. Water Research, 2025, 268: 122618 [29] Yang LY, Chen Y, Lei JJ, et al. Effects of coastal aquaculture on sediment organic matter: Assessed with multiple spectral and isotopic indices. Water Research, 2022, 223: 118951 [30] Du YX, Lu YL, Roebuck JA, et al. Direct versus indirect effects of human activities on dissolved organic matter in highly impacted lakes. Science of the Total Environment, 2021, 752: 141839 [31] Ryan KA, Palacios LC, Encina F, et al. Assessing inputs of aquaculture-derived nutrients to streams using dissolved organic matter fluorescence. Science of the Total Environment, 2022, 807: 150785 [32] 吴雪, 赵鑫, 辜伟芳, 等. 浙南海岸带人工秋茄(Kandelia obovata)红树林与互花米草(Spartina alterniflora)盐沼土壤碳汇对比研究. 热带海洋学报, 2025, 44(1): 172-181 [33] Li Y, Chen ZM, Chen J, et al. Oxygen availability re-gulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Global Change Biology, 2022, 28: 7410-7427 [34] Lv XF, Yu P, Mao WT, et al. Vertical variations in bacterial community composition and environmental factors in the culture pond sediment of sea cucumber Apostichopus japonicus. Journal of Coastal Research, 2018, 84: 69-76 [35] 赵海晓, 高永超, 赵庆庆, 等. 不同水文条件下黄河三角洲湿地土壤溶解性有机碳的分布特征. 北京师范大学学报: 自然科学版, 2021, 57(1): 51-58 [36] 李玲, 仇少君, 檀菲菲, 等. 盐分和底物对黄河三角洲区土壤有机碳分解与转化的影响. 生态学报, 2013, 33(21): 6844-6852 [37] Hou N, Zeng QS, Wang WQ, et al. Soil carbon pools and microbial network stability depletion associated with wetland conversion into aquaculture ponds in Southeast China. Science of the Total Environment, 2024, 954: 176492 [38] 朱婉漪. 东南沿海湿地生境变化对土壤有机碳及稳定性影响. 硕士论文. 福州: 福建师范大学, 2023 [39] 李璐璐, 江韬, 闫金龙, 等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征. 环境科学, 2014, 35(3): 933-941 [40] 马琦琦, 李刚, 魏永. 城郊关键带土壤中溶解性有机质的光谱特性及其时空变异. 环境化学, 2020, 39(2): 455-466 |