欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (11): 3287-3295.doi: 10.13287/j.1001-9332.202511.006

• 研究论文 • 上一篇    下一篇

长白落叶松节子纵向生长模拟及其抽样策略

李泽霖1,2, 贾炜玮1,2*, 赵国强3   

  1. 1森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040;
    2东北林业大学林学院, 哈尔滨 150040;
    3黑龙江省林口林业局有限公司, 黑龙江牡丹江 157000
  • 收稿日期:2025-08-15 接受日期:2025-09-14 出版日期:2025-11-18 发布日期:2026-06-18
  • 通讯作者: * E-mail: jiaww2002@163.com
  • 作者简介:李泽霖, 男, 1999年生, 博士研究生。主要从事林分生长与收获模型研究。E-mail: 3296726873@qq.com
  • 基金资助:
    国家重点研发计划项目(2023YFD2200802)和中央财政林业科技推广示范项目(黑[2024]TG29)

Simulation of longitudinal knot growth and sampling strategy in Larix olgensis

LI Zelin1,2, JIA Weiwei1,2*, ZHAO Guoqiang3   

  1. 1Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, Harbin 150040, China;
    2School of Forestry, Northeast Forestry University, Harbin 150040, China;
    3Heilongjiang Linkou Forestry Bureau Co., Ltd., Mudanjiang 157000, Heilongjiang, China
  • Received:2025-08-15 Accepted:2025-09-14 Online:2025-11-18 Published:2026-06-18

摘要: 节子是木材中常见的缺陷,其尺寸对木材的力学性能和外观质量具有重要影响。为揭示节子纵向生长规律,本研究以黑龙江省孟家岗林场的27株人工长白落叶松为对象,基于1137个节子样本数据模拟节子沿树干的纵向生长,构建节子宽度预测模型,并对其进行抽样策略分析。结果表明: 在7种常用的生长模型中,Hossfeld模型为最优基础模型,在其基础上引入树木水平与节子水平变量后构建再参数化模型,进一步引入随机效应建立混合效应模型。混合效应模型的拟合效果最佳,R2提高至0.6051,RMSE降低至2.3865,显著优于再参数化模型。使用4种抽样策略对混合模型进行校正,抽样策略对混合模型的预测精度具有重要影响,其中方案2(在树干上部随机抽取7个节子)的预测效果最佳。参数结果表明,节子宽度随分枝着生高度和分枝角度的增大而增大,而随长白落叶松高径比的增大而减小。推荐在林业管理中使用混合模型,在树干上部抽取7个节子预测节子宽度,并优先对树干上部的枝条进行整枝,以有效减少节子宽度,提高木材质量。

关键词: 节子宽度, 混合效应模型, 模型校正

Abstract: Knots are common defects in wood, the size of which has a major influence on mechanical performance and visual quality. To elucidate the longitudinal growth patterns of knots, we examined 27 individuals of Larix olgensis from the Mengjiagang Forest Farm in Heilongjiang Province. Based on 1137 knot samples, we simulated the vertical growth dynamics of knots along the stem and developed a predictive model for knot width and sampling strategy. The results showed that Hossfeld model was the best baseline among the seven commonly used models of growth. We further constructed a reparameterized model by incorporating tree-level and knot-level variables, as well as a mixed-effects framework improved with random effects. The mixed-effects model had the best performance, with R2 increased to 0.6051 and RMSE reduced to 2.3865. We tested four sampling strategies to calibrate the mixed model, and the results showed that sampling design strongly influenced predictive accuracy. Scheme 2, randomly selecting seven knots from the upper stem, achieved the best balance between accuracy and efficiency. Model parameters indicated that knot width increased with branch insertion height and angle but decreased with increasing height diameter ratio of L. olgensis. We recommended to use the mixed-effects model in forest management combined with sampling of seven upper-stem knots for prediction. Moreover, priority should be given to pruning upper-stem branches to effectively reduce knot width and improve timber quality.

Key words: knot width, mixed-effects model, model calibration