欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (12): 3718-3728.doi: 10.13287/j.1001-9332.202512.010

• 研究论文 • 上一篇    下一篇

林冠和林下氮沉降对毛竹林土壤氮素转化关键过程的影响

李娜1,2, 蒋文婷1,2, 陈增明3, 王燕1,2, 施曼1,4, 李永夫1,2, 余兵1,2, 蔡延江1,2*   

  1. 1浙江农林大学, 森林食物资源挖掘与利用全国重点实验室, 杭州 311300;
    2浙江农林大学环境与资源学院/碳中和学院, 杭州 311300;
    3中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 南京 210008;
    4浙江农林大学竹子研究院, 杭州 311300
  • 收稿日期:2025-02-18 修回日期:2025-10-14 出版日期:2025-12-18 发布日期:2026-07-18
  • 通讯作者: *E-mail: yjcai@zafu.edu.cn
  • 作者简介:李娜, 女, 1998年生, 硕士研究生。主要从事土壤氮素转化过程研究。E-mail: 19157843154@163.com
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作重点专项(2022YFE0127800)和国家自然科学基金项目(42277286,42407441)

Effects of canopy and understory nitrogen deposition on key processes of soil nitrogen transformation in a Phyllostachys edulis forest

LI Na1,2, JIANG Wenting1,2, CHEN Zengming3, WANG Yan1,2, SHI Man1,4, LI Yongfu1,2, YU Bing1,2, CAI Yanjiang1,2*   

  1. 1State Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China;
    2College of Environment and Resources/College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China;
    3State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
    4Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
  • Received:2025-02-18 Revised:2025-10-14 Online:2025-12-18 Published:2026-07-18

摘要: 土壤氮矿化、硝化和反硝化等氮素转化过程是氮素生物地球化学循环的重要环节。以往关于氮沉降对森林土壤氮素转化过程影响的研究大部分仅采用林下模拟氮沉降,忽略了林冠的截留作用,无法真实反映氮沉降的影响效应。本研究以进行了3年的野外模拟林冠-林下氮沉降毛竹林土壤为对象,设林冠氮沉降(CN,施氮量50 kg·hm-2·a-1)、林下氮沉降(UN,施氮量50 kg·hm-2·a-1)、林冠对照(CCK,与模拟氮沉降溶液等量的水)和林下对照(UCK,与模拟氮沉降溶液等量的水)4个处理,测定土壤净氮矿化和净硝化速率及土壤反硝化速率,探究不同氮沉降方式对土壤氮素转化关键过程的影响机制。结果表明: 林冠和林下氮沉降均能显著增加土壤净氮矿化、净硝化和反硝化速率,其中,CN较CCK的增幅分别为43.4%、44.9%和33.0%;UN较UCK的增幅分别为48.6%、48.7%和41.2%。氮沉降背景下土壤净氮矿化速率的增加主要是由土壤可溶性有机氮和微生物生物量氮(MBN)及脲酶活性增加所致;净硝化速率的增加主要归因于氨氧化古菌丰度、硝化酶活性和MBN的增加;反硝化速率的增加是由于氮沉降促进了氮矿化和硝化作用的进行以及增加了反硝化功能基因(nirK)丰度。此外,CN和UN处理下土壤净氮矿化和净硝化速率无显著差异,但UN处理的土壤反硝化速率显著高于CN,这主要与前者的nirK基因丰度较高有关。

关键词: 林冠-林下氮沉降, 毛竹林, 氮素转化, 硝化酶活性

Abstract: Soil nitrogen transformation processes, such as nitrogen mineralization, nitrification, and denitrification, are important links in nitrogen biogeochemical cycling. Previous studies on the impact of nitrogen deposition on nitrogen transformation process in forest soils have mostly relied on simulating nitrogen deposition under forest canopy, neglecting the interception effect of the canopy and failing to truly reflect the effects of nitrogen deposition. This study focused on the field simulation of canopy understory nitrogen deposition in Phyllostachys edulis forest soil over three years. There were four treatments: canopy nitrogen deposition (CN, nitrogen application rate of 50 kg·hm-2·a-1), understory nitrogen deposition (UN, nitrogen application rate of 50 kg·hm-2·a-1), canopy control (CCK, water equivalent to simulated nitrogen deposition solution), and understory control (UCK, water equivalent to simulated nitrogen deposition solution). We measured soil net nitrogen mineralization and net nitrification rates, as well as soil denitrification rates, to explore the impact mechanisms of different nitrogen deposition methods on key processes of soil nitrogen transformation. The results showed that both canopy and understory nitrogen deposition significantly increased soil net nitrogen mineralization, net nitrification, and denitrification rates, with CN showing an increase of 43.4%, 44.9%, and 33.0% compared to CCK, respectively. The growth rates of UN compared to UCK were 48.6%, 48.7%, and 41.2%, respectively. The increase in soil net nitrogen mineralization rate under nitrogen deposition was mainly caused by the increases in soil soluble organic nitrogen, microbial biomass nitrogen (MBN), and urease activity. The increase in net nitrification rate was mainly attributed to the abundance of ammonia oxidizing archaea, the activity of nitrifying enzymes, and the increase in MBN. The increase in denitrification rate following nitrogen deposition was induced by the promotion of nitrogen mineralization and nitrification, as well as an increase in the abundance of denitrification functional genes (nirK). In addition, there was no significant difference in soil net nitrogen mineralization and net nitrification rates between CN and UN treatments, but the denitrification rate of soil treated with UN was significantly higher than that of CN, mainly due to the higher abundance of nirK genes.

Key words: canopy-understory nitrogen deposition, Phyllostachys edulis forest, nitrogen conversion, nitrification enzyme activity