[1] 许振柱, 周广胜. 植物氮代谢及其环境调节研究进展. 应用生态学报, 2004, 15(3): 511-516 [2] 肖春艳, 胡情情, 陈晓舒, 等. 基于文献计量的大气氮沉降研究进展. 生态学报, 2023, 43(3): 1294-1307 [3] 方华, 莫江明. 氮沉降对森林凋落物分解的影响. 生态学报, 2006, 26(9): 3127-3136 [4] Hagh-Doust N, Mikryukov V, Anslan S, et al. Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics. New Phytologist, 2023, 238: 2607-2620 [5] Gou XM, Reich PB, Qiu LP, et al. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Global Change Biology, 2023, 29: 4028-4043 [6] Zhu JX, He NP, Zhang JH, et al. Estimation of carbon sequestration in China’s forests induced by atmospheric wet nitrogen deposition using the principles of ecological stoichiometry. Environmental Research Letters, 2017, 12: 114038 [7] 樊后保, 黄玉梓, 袁颖红, 等. 森林生态系统碳循环对全球氮沉降的响应. 生态学报, 2007, 27(7): 2997-3009 [8] Lorenz K, Lal R. Soil organic carbon sequestration in agroforestry systems: A review. Agronomy for Sustai-nable Development, 2014, 34: 443-454 [9] Lu XF, Hou EQ, Guo JY, et al. Nitrogen addition stimu-lates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Global Change Biology, 2021, 27: 2780-2792 [10] Wu ZF, Tang ZH, Yu TY, et al. Nitrogen fertilization rates mediate rhizosphere soil carbon emissions of continuous peanut monoculture by altering cellulose-specific microbes. Frontiers in Plant Science, 2023, 14: 1109860 [11] Wang MH, Li FC, Dong LL, et al. Effects of exogenous organic/inorganic nitrogen addition on carbon pool distribution and transformation in grassland soil. Science of the Total Environment, 2023, 858: 159919 [12] Chen JG, Xiao W, Zheng CY, et al. Nitrogen addition has contrasting effects on particulate and mineral-asso-ciated soil organic carbon in a subtropical forest. Soil Biology and Biochemistry, 2020, 142: 107708 [13] Lavallee JM, Soong JL, Cotrufo MF, et al. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [14] Chu HY, Ni HJ, Su WH, et al. Enhanced nitrogen fertilizer input alters soil carbon dynamics in Moso bamboo forests, impacting particulate organic and mineral-associated carbon pools. Forests, 2023, 14: 2460 [15] Cusack DF, Silver WL, Torn MS, et al. Effects of nitrogen additions on above- and belowground carbon dyna-mics in two tropical forests. Biogeochemistry, 2011, 104: 203-225 [16] Chen Y, Liu X, Hou YH, et al. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2021, 458: 93-103 [17] Chen H, Li DJ, Feng WT, et al. Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 2018, 69: 1098-1104 [18] Li JY, Qu WD, Han GX, et al. Effects of drying-rewetting frequency on vertical and lateral loss of soil organic carbon in a tidal salt marsh. Wetlands, 2020, 40: 1433-1443 [19] 杨阳, 王宝荣, 窦艳星, 等. 植物源和微生物源土壤有机碳转化与稳定研究进展. 应用生态学报, 2024, 35(1): 111-123 [20] Man M, Pierson D, Chiu R, et al. Twenty years of litter manipulation reveals that above-ground litter quantity and quality controls soil organic matter molecular composition. Biogeochemistry, 2022, 159: 393-411 [21] 王浩, 党晓宏, 汪季, 等. 氮沉降影响下沙柳和小叶杨凋落物的分解特征. 环境科学与技术, 2023, 46(1): 39-46 [22] 苗雪松, 王嗣奇, 张彦东, 等. 施氮对落叶松人工林凋落物分解及土壤有机碳矿化的影响. 森林工程, 2022, 38(6): 1-8 [23] 周世兴, 黄从德, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响. 应用生态学报, 2016, 27(5): 1368-1374 [24] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析. 世界竹藤通讯, 2019, 17(6): 45-48 [25] 王杉杉, 徐秋芳, 范博, 等. 毛竹扩张对杉木林土壤微生物残体碳积累的影响. 生态学报, 2023, 43(5): 1902-1912 [26] 王毅焕, 靳一丹, 姜铭楷, 等. 短期氮沉降改变毛竹林凋落物和土壤有机质化学组成. 应用生态学报, 2023, 34(10): 2593-2600 [27] 蒋文婷, 田立斌, 朱高荻, 等. 不同形态氮添加对毛竹林土壤N2O排放的影响. 植物营养与肥料学报, 2022, 28(5): 857-868 [28] Galloway JN, Dentener FJ, Capone DG, et al. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70: 153-226 [29] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [30] Vance ED, Brookes PC, Jenkinson DS, et al. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 1987, 19: 697-702 [31] German DP, Weintraub MN, Grandy AS, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43: 1387-1397 [32] Marriott EE, Wander MM. Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal, 2006, 70: 950-959 [33] Pei GT, Liu J, Peng B, et al. Nonlinear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences, 2020, 125: e2019-JG005462 [34] Eastman BA, Adams MB, Peterjohn WT, et al. The path less taken: Long-term N additions slow leaf litter decomposition and favor the physical transfer pathway of soil organic matter formation. Soil Biology and Bioche-mistry, 2022, 166: 108567 [35] Vivanco L, Austin AT. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina: N addition and plant diversity interactively affect decomposition. Global Change Bio-logy, 2011, 17: 1963-1974 [36] Song YY, Song CC, Ren JS, et al. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang Plain, Northeast China. Wetlands, 2019, 39: 549-557 [37] Jiang XY, Cao LX, Zhang RD, et al. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi. Applied Soil Eco-logy, 2014, 80: 108-115 [38] Tabatabai MA. Soil enzymes// Weaver RW, Angle S, Bottomley P, eds. SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 775-833 [39] 刘红梅, 周广帆, 李洁, 等. 氮沉降对贝加尔针茅草原土壤酶活性的影响. 生态环境学报, 2018, 27(8): 1387-1394 [40] 张闯, 邹洪涛, 张心昱, 等. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响. 应用生态学报, 2016, 27(11): 3427-3434 [41] Ye CL, Chen DM, Hall SJ, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecology Letters, 2018, 21: 1162-1173 [42] Cotrufo MF, Lavallee JM. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, 2022, 172: 1-66 [43] Averill C, Waring B. Nitrogen limitation of decomposition and decay: How can it occur? Global Change Bio-logy, 2018, 24: 1417-1427 [44] Bowman WD, Cleveland CC, Halada Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1: 767-770 [45] 薛志婧, 李霄云, 焦磊, 等. 土壤矿质结合态有机碳形成及稳定机制的研究进展. 水土保持学报, 2023, 37(5): 12-23 [46] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [47] Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528: 60-68 |