[1] 陈明, 任仁, 王子健, 等. 北京工业废水和城市污水环境激素污染状况调查. 环境科学研究, 2007, 20(6): 1-7 [Chen M, Ren R, Wang Z-J, et al. Investigation on status of environmental hormone pollution in the industrial wastewater and urban sewage in Beijing. Research of Environmental Sciences, 2007, 20(6): 1-7] [2] 覃琳, 宋孝玉, 晁智龙, 等. 基于城镇排污视角的水功能区纳污能力模型及其应用.应用生态学报, 2018, 29(9): 3051-3057 [Qin L, Song X-Y, Chao Z-L, et al. Permissible pollution bearing capacity model of water function zone based on the perspective of municipal wastewater discharge and its application. Chinese Journal of Applied Ecology, 2018, 29(9): 3051-3057] [3] Gu M. Dye industry to do more to protect environment. Filtration and Separation, 1992, 29: 485-487 [4] 李庆云, 韩洪晶. 偶氮类染料废水处理技术的研究进展.当代化工, 2016, 45(9): 2217-2220 [Li Q-Y, Han H-J. Research progress in the treatment technology of azo dying wastewater. Contemporary Chemical Industry, 2016, 45(9): 2217-2220] [5] 蒋浩. 磁性Fe3O4纳米颗粒催化阴极电Fenton降解水中偶氮染料甲基橙研究. 博士论文. 南京: 南京大学, 2017 [Jiang H. Cathode Electro-Fenton Oxidation of Azo Dye Methyl Orange Catalyzed by Magnetic Fe3O4 Nanoparticles. PhD Thesis. Nanjing: Nanjing University, 2017] [6] Zhang YF, Bian F, Yan YJ, et al. Adsorption of dye in media industry pollution with glass wool modified by graphite oxide. Applied Mechanics and Materials, 2014, 448-453: 119-122 [7] Zhou MH, Srkk H, Sillanp M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 2011, 78: 290-297 [8] Cripps C, Bumpus JA, Aust SD. Biodegradation of azo and heterocyclic dyes by phanerochaete chrysosporium. Applied and Environmental Microbiology, 1990, 56: 1114-1118 [9] Chakrabarti S, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 2004, 112: 269-278 [10] Han L, Wang P, Dong SJ. Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 2012, 4: 5814-5825 [11] Gondal MA, Sayeed MN, Seddigi Z. Laser enhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst. Journal of Hazardous Materials, 2008, 155: 83-89 [12] Steinmiller EMP, Choi KS. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 20633-20636 [13] Trotochaud L, Mills TJ, Boettcher SW. An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. Journal of Physical Chemistry Letters, 2013, 4: 931-935 [14] Wang L, Xing H, Liu Z, et al. Synthesis and excellent microwave absorption properties of ZnO/Fe3O4/MWCNTs composites. Nano, 2016, 11: 1650139 [15] 张小婧, 刘旸, 张骞, 等. 铋单质及其复合材料在光催化中的应用.化学进展, 2016, 28(10): 1560-1568 [Zhang X-J, Liu Y, Zhang S, et al. Bismuth and bismuth composite photocatalysts. Progress in Chemistry, 2016, 28(10): 1560-1568] [16] 余家国, 许第发. 银系半导体光催化材料研究进展. 硅酸盐学报, 2017, 45(9): 36-51 [Yu J-G, Xu D-F. Progress in research on silver-based semiconductor photocatalytic materials. Journal of the Chinese Ceramic Society, 2017, 45(9): 36-51] [17] Koenig SP, Doganov RA, Schmidt H, et al. Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014, 104: 10.1063/1.4868132 [18] Park CM, Sohn HJ. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials Communication, 2007, 19: 2465-2468 [19] Xia FN, Wang H, Jia YC. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458, doi:10.1038/ncomms5458 [20] Qiao JS, Kond XH, Hu ZX, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5: 4475, doi:10.1038/ncomms5475 [21] Roldn R, Castellanos-Gomez A. Black phosphorus: A new bandgap tuning knob. Nature Photonics, 2017, 11: 407-409 [22] Wang H, Jiang SL, Shao W, et al. Optically switchable photocatalysis in ultrath in black phosphorus nanosheets. Journal of the American Chemical Society, 2018, 140: 3474-3480 [23] Tripathi AK, Singh MK, Mathpal MC, et al. Study of structural transformation in TiO2 nanoparticles and its optical properties. Journal of Alloys and Compounds, 2013, 549: 114-120 [24] Hanlon D, Backes C, Doherty E, et al. Liquid exfolia-tion of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6: 8563, doi:10.1038/ncomms9563 [25] Xu YH, Jiang XF, Ge YQ, et al. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. Journal of Materials Chemistry C, 2017, 5: 3007-3013 [26] Zhang XJ, Zhang ZM, Zhang SY, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small, 2017, 13: 1701210, DOI: 10.1002/smll.201701210 [27] Sofer Z, Boua D, Luxa J, et al. Few-layer black phosphorus nanoparticles. Chemical Communications, 2016, 52: 1563-1566 [28] Zhang SY, Zhang XJ, Lei L, et al. pH-dependent degradation of layered black phosphorus: Essential role of hydroxide ions. Angewandte Chemie International Edition, 2019, 131: 477-481 [29] Huang Y, Qiao JS, Ke K, et al. Interaction of black phosphorus with oxygen and water. Chemistry of Materials, 2016, 28: 8330-8339 [30] Zhao Q, Ma W, Pan B, et al. Wrinkle-induced high sorption makes few-layered black phosphorus a superior adsorbent for ionic organic compounds. Environmental Science: Nano, 2018, 5: 1454-1465 [31] Marko S, Silva-Junior MR, Sauer SPA, et al. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. Journal of Chemical Physics, 2008, 128: 1063-331 [32] Tsuneda S, Ishihara Y, Hamachi M, et al. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process. Water Science and Technology, 2002, 46: 33-38 [33] Shan GQ, Fu Y, Chu XL, et al. Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide. Journal of Colloid and Interface Science, 2015, 444: 123-131 [34] Chen ZX , Jin XY , Chen Z , et al. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 2011, 363: 601-607 [35] Ge D, Zeng Z, Arowo M, et al. Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed. Chemosphere, 2016, 146: 413-418 [36] Han J, Zeng HY, Xu S, et al. Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Applied Catalysis A: General, 2016, 527: 72-80 |