[1] 陈学森, 韩明玉, 苏桂林, 等. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604 [Chen X-S, Han M-Y, Su G-L, et al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604] [2] 尹承苗, 王玫, 王嘉艳, 等. 苹果连作障碍研究进展. 园艺学报, 2017, 44(11): 2215-2230 [Yin C-M, Wang M, Wang J-Y, et al. The research advance on apple replant disease. Acta Horticulturae Sinica, 2017, 44(11): 2215-2230] [3] Mazzola M, Manici LM. Apple replant disease: Role of microbial ecology in cause and control. Annual Review of Phytopathology, 2012, 50: 45 [4] 刘星, 张文明, 张春红, 等. 土壤灭菌-生物有机肥联用对连作马铃薯及土壤真菌群落结构的影响. 生态学报, 2016, 36(20): 6365-6378 [Liu X, Zhang W-M, Zhang C-H, et al. Combination of the application of soil disinfection and bio-organic fertilizer amendment and its effects on yield and quality of tubers, physiological characteristics of plants, and the soil fungal community in a potato monoculture system. Acta Ecologica Sinica, 2016, 36(20): 6365-6378] [5] 毛连纲, 颜冬冬, 吴篆芳, 等. 土壤化学熏蒸效果的影响因素述评. 农药, 2013, 52(8): 547-551 [Mao L-G, Yan D-D, Wu Z-F, et al. Review of affecting factors of soil fumigation. Agrochemicals, 2013, 52(8): 547-551] [6] Nicola L, Turco E, Albanese D, et al. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Applied Soil Ecology, 2017, 113: 71-79 [7] Yim B, Hanschen FS, Wrede A, et al. Effects of biofumigation using Brassica juncea and Raphanus sativus in comparison to disinfection using Basamid on apple plant growth and soil microbial communities at three field sites with replant disease. Plant and Soil, 2016, 406: 389-408 [8] 刘丽英, 丁文龙, 曹雅杰, 等. 苹果连作生防细菌B6对平邑甜茶幼苗生物量及连作土壤环境的影响. 应用生态学报, 2018, 29(12): 4165-4171 [Liu L-Y, Ding W-L, Cao Y-J, et al. Effects of antagonistic bacteria B6 against the pathogens of apple replant disease on the biomass of Malus hupehensis Rehd. seedling and soil environment under replanting disease. Chinese Journal of Applied Ecology, 2018, 29(12): 4165-4171] [9] 王秋霞, 颜冬冬, 王献礼, 等. 土壤熏蒸剂研究进展. 植物保护学报, 2017, 44(4): 529-543 [Wang Q-X, Yan D-D, Wang X-L, et al. Research advances in soil fumigants. Journal of Plant Protection, 2017, 44(4): 529-543] [10] 陈品三. 杀线虫剂主要类型、特性及其作用机制. 农药科学与管理, 2001, 22(2): 33-35 [Chen P-S. The main types, characteristics and action mechanisms of nematicides. Pesticide Science and Administration, 2001, 22(2): 33-35] [11] 张超, 卜东欣, 张鑫, 等. 棉隆对辣椒疫霉病的防效及对土壤微生物群落的影响. 植物保护学报, 2015, 42(5): 834-840 [Zhang C, Bu D-X, Zhang X, et al. Effects of dazomet on Phytophthora capsici and microbial communities in the field trials. Journal of Plant Protection, 2015, 42(5): 834-840] [12] 聂海珍, 孙漫红, 李世东,等. 棉隆与淡紫拟青霉联合防治番茄根结线虫病的效果评价. 植物保护学报, 2016, 43(4): 689-696 [Nie H-Z, Sun M-H, Li S-D, et al. Integrated control of root-knot nematode disease of tomato by dazomet and Paecilomyces lilacinus. Journal of Plant Protection, 2016, 43(4): 689-696] [13] 徐少卓, 王义坤, 王 柯, 等. 不同浓度棉隆熏蒸对老龄苹果园土壤微生物环境的动态影响. 水土保持学报, 2018, 32(2): 290-297 [Xu S-Z, Wang Y-K, Wang K, et al. Dynamic change trend of different concentrations dazomet fumigation on the microorganisms environment in the soil of old apple orchard. Journal of Soil and Water Conservation, 2018, 32(2): 290-297] [14] 刘丽英, 刘珂欣, 朱浩, 等. 有机物料厌氧发酵液中拮抗苹果再植障碍病原真菌的细菌筛选及其防治效果. 应用生态学报, 2018, 29(10): 251-259 [Liu L-Y, Liu K-X, Zhu H, et al. Screening of bacteria that antagonize the main pathogen fungi of apple replantation disorders from anaerobic fermented fluid of organic material and its inhibitory effect. Chinese Journal of Applied Ecology, 2018, 29(10): 251-259] [15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [Bao S-D. Soil and Agrochemistry Analysis. Beijing: China Agriculture Press, 2000] [16] 毛志泉, 王丽琴, 沈向, 等. 有机物料对平邑甜茶实生苗根系呼吸强度的影响. 植物营养与肥料学报, 2004, 11(2): 171-175 [Mao Z-Q, Wang L-Q, Shen X, et al. Effect of organic materials on respiration intensity of annual Malus hupehensis Rehd. root system. Plant Nutrition and Fertilizer Science, 2004, 11(2): 171-175] [17] Zhang YK, Han XJ, Chen XL, et al. Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. Scientia Horticulturae, 2009, 123: 217-223 [18] Omran RG. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 65: 407-408 [19] Singh BK, Sharma SR, Singh B. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase. Scientia Horticulturae, 2010, 124: 9-13 [20] 赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002: 98-99 [Zhao S-J, Shi G-A, Dong X-C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002: 98-99] [21] 程丽娟, 薛泉宏. 微生物学实验技术. 西安: 世界图书出版公司, 2000 [Cheng L-J, Xue Q-H. Microbiology Laboratory Technology. Xi’an: World Publishing Corporation, 2000] [22] 关松荫. 土壤酶及其研究法. 北京: 中国农业出版社, 1986: 274-340 [Guan S-Y. Soil Enzymes and Their Research Methods. Beijing: China Agriculture Press, 1986: 274-340] [23] 吴涛, 冯歌林, 曾珍, 等. 生物质炭对盆栽黑麦草生长的影响及机理. 土壤学报, 2017, 54(2): 525-534 [Wu T, Feng G-L, Zeng Z, et al. Effect of biochar addition on ryegrass growth in a pot experiment and its mechanism. Acta Pedologica Sinica, 2017, 54(2): 525-534] [24] Huang LF, Song LX, Xia XJ, et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. Journal of Chemical Ecology, 2013, 39: 232-242 [25] Wang D, Juzwik J, Fraedrich SW, et al. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries. Canadian Journal of Forest Research, 2005, 35: 1202-1212 [26] Ruzo LO. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Management Science, 2006, 62: 99-113 [27] Srivastava RK, Pandey P, Rajpoot R, et al. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 2014, 251: 1047-1065 [28] Kanazawa S, Sano S, Koshiba T, et al. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: Comparison with those during dark-induced senescence. Physiologia Plantarum, 2000, 109: 211-216 [29] 张旭龙, 马淼, 吴振振, 等. 慧油葵与光果甘草间作对根际土壤酶活性及微生物功能多样性的影响. 土壤, 2016, 48(6): 1114-1119 [Zhang X-L, Ma M, Wu Z-Z, et al. Effects of Helianthus annuus and Glycyrrhiza glabra intercropping on rhizosphere soil enzyme activities and soil microbes functional diversity. Soils, 2016, 48(6): 1114-1119] [30] Yang YS, Liu CJ, Kutsch W, et al. Impact of continuous Chinese fir monoculture on soil. Pedosphere, 2004, 14(1): 117-124 [31] Klose S, Acosta-Martinez V, Ajwa HA. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biology and Biochemistry, 2006, 38: 1243-1254 [32] Mazzola M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology, 1998, 88: 930-938 [33] Manici LM, Ciavatta C, Kelderer M, et al. Replant problems in South Tyrol: Role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil, 2003, 256: 315-324 [34] Schoor LV, Denman S, Cook NC. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae, 2009, 119: 153-162 [35] Wang GS, Yin CM, Pan FB, et al. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Horticultural Plant Journal, 2018, 4: 5-11 [36] 薛超, 黄启为, 凌宁, 等. 连作土壤微生物区系分析、调控及高通量研究方法. 土壤学报, 2011, 48(3): 612-618 [Xue C, Huang Q-W, Ling N, et al. Analysis, regulation and high-throughput sequencing of soil microflora in mono-cropping system. Acta Pedologica Sinica, 2011, 48(3): 612-618] |