[1] Silberberger MJ, Renaud PE, Kröncke I, et al. Food-web structure in four locations along the European shelf indicates spatial differences in ecosystem functioning. Frontiers in Marine Science, 2018, 5: 00119 [2] 刘晓收, 倪大朋, 钟鑫, 等. 黄海大型底栖动物食物网结构和营养关系研究. 中国海洋大学学报: 自然科学版, 2020, 50(9): 20-33 [3] 刘春云, 姜少玉, 宋博, 等. 烟台养马岛潮间带大型底栖动物食物网结构特征. 海洋与湖沼, 2020, 51(3): 467-476 [4] Ehrnsten E, Norkko A, Timmermann K, et al. Benthic-pelagic coupling in coastal seas: Modelling macrofaunal biomass and carbon processing in response to organic matter supply. Journal of Marine Systems, 2019, 196: 36-47 [5] Sardans J, Rivas-Ubach A, Peuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry, 2012, 111: 1-39 [6] Naddafi R, Eklov P, Pettersson K. Stoichiometric constraints do not limit successful invaders: Zebra mussels in Swedish lakes. PLoS One, 2009, 4(4): e5345 [7] Villnás A, Mákelin S, Vanni MJ. Allometric and stoichiometric traits predict nutrient excretion rates by benthic consumers. Frontiers in Marine Science, 2022, 9: 870308 [8] 陈蕾, 李超伦. 海洋浮游生物的生态化学计量学研究进展. 应用生态学报, 2014, 25(10): 3047-3055 [9] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947 [10] Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2002 [11] Mákelin S, Villnás A. Food sources drive temporal varia-tion in elemental stoichiometry of benthic consumers. Limnology and Oceanography, 2022, 67: 784-799 [12] Cross WF, Benstead JP, Frost PC, et al. Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshwater Biology, 2010, 50: 1895-1912 [13] Liess A, Hillebrand H. Stoichiometric variation in C:N, C:P, and N:P ratios of littoral benthic invertebrates. Journal of the North American Benthological Society, 2005, 24: 256-269 [14] Frost PC, Tank SE, Turner MA, et al. Elemental composition of littoral invertebrates from oligotrophic and eutrophic Canadian lakes. Journal of the North American Benthological Society, 2003, 22: 51-62 [15] Cross WF, Benstead JP, Rosemond AD, et al. Consu-mer-resource stoichiometry in detritus-based streams. Ecology Letters, 2003, 6: 721-732 [16] 蔡永久, 薛庆举, 陆永军, 等. 长江中下游浅水湖泊5种常见底栖动物碳、氮、磷化学计量特征. 湖泊科学, 2015, 27(1): 76-85 [17] Olivier AV, Vay LL, Malham SK, et al. Geographical variation in the carbon, nitrogen, and phosphorus content of blue mussels, Mytilus edulis. Marine Pollution Bulletin, 2021, 167: 112291 [18] 董世淇, 张合烨, 孙国庆, 等. 北黄海褡裢岛海藻场邻近海域大型底栖动物群落营养结构的季节变化. 应用生态学报, 2023, 34(7): 1763-1770 [19] 张泽鹏, 董世淇, 王兆国, 等. 北黄海褡裢岛海藻场邻近海域大型底栖动物群落结构及其与环境因子的关系. 海洋环境科学, 2023, 42(3): 369-377 [20] 国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 12763.6—2007 海洋调查规范第6部分: 海洋生物调查. 北京: 中国标准出版社, 2008 [21] Castro KL, Epherra L, Raffo MP, et al. Changes in the diet of the native sea urchin Arbacia dufresnii at different scenarios of the Undaria pinnatifida invasion (Patagonia, Argentina). Food Webs, 2022, 31: e00221 [22] Evans-White MA, Stelzer RS, Lamberti GA. Taxonomic and regional patterns in benthic macroinvertebrate elemental composition in streams. Freshwater Biology, 2005, 50: 1786-1799 [23] 房景辉, 张继红, 蒋增杰, 等. 北黄海3种常见蛇尾的主要营养成分分析. 渔业科学进展, 2015, 36(6): 17-21 [24] 姜森颢, 梁峻, 孙欣. 紫蛇尾的生化成分及作为饲料原料对刺参幼参生长和存活的影响. 饲料工业, 2012, 33(16): 13-17 [25] Isanta-Navarro J, Prater C, Peoples LM, et al. Revisiting the growth rate hypothesis: Towards a holistic stoichiometric understanding of growth. Ecology Letters, 2022, 25: 2324-2339 [26] Ferrão-Filho AS, Tessier AJ, DeMott WR, et al. Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: Testing stoichiometric theory and the growth rate hypothesis. Limnology & Oceanography, 2007, 52: 407-415 [27] Christensen AB, Taylor G, Lamare M, et al. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. Journal of Experimental Biology, 2023, 226: 1-14 [28] Clarke A. Ecological stoichiometry in six species of An-tarctic marine benthos. Marine Ecology Progress Series, 2008, 369: 25-37 [29] Bayne BL. Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integrative and Comparative Biology, 2004, 44: 425-432 [30] Persson J, Fink P, Goto A, et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119: 741-751 [31] Fink P, Peters L, Elert EV. Stoichiometric mismatch between littoral invertebrates and their periphyton food. Archiv für Hydrobiologie, 2006, 165: 145-165 [32] Tavares MR, Costa PAS, Ventura CRR. Population size structure, asexual reproduction, and somatic growth estimates of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea) on the southeastern coast of Brazil. Marine Biodiversity, 2019, 49: 1713-1725 [33] Fernandez-Reiriz MJ, Irisarri J, Labarta U. Flexibility of physiological traits underlying inter-individual growth differences in intertidal and subtidal Mussels Mytilus galloprovincialis. PLoS One, 2016, 11(2): 1-14 [34] Elser JJ, Dobberfuhl DR, Mackay NA, et al. Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. BioScience, 1996, 46: 674-684 [35] 彭松耀, 李新正, 王洪法, 等. 南黄海春季大型底栖动物优势种生态位. 生态学报, 2015, 35(6): 1917-1928 [36] 彭松耀, 李新正, 徐勇, 等. 黄海大型底栖动物功能摄食类群的空间格局. 海洋与湖沼, 2020, 51(3): 456-466 [37] 王才广, 朱亮, 黄亮亮, 等. 北部湾鱼类碳、氮、磷生态化学计量特征. 生态学报, 2023, 43(10): 4226-4241 [38] Evangelista C, Pauli BD, Vollestad LA, et al. Stoichiometric consequences of size-selective mortality: An experimental test using the Japanese medaka (Oryzias latipes). Science of the Total Environment, 2020, 724: 138193 [39] Bi JH, Li Q, Zhang XJ, et al. Seasonal variation of biochemical components in clam (Saxidomus purpuratus Sowerby 1852) in relation to its reproductive cycle and the environmental condition of Sanggou Bay, China. Journal of Ocean University of China, 2016, 15: 341-350 [40] Serdar S, Lök A. Gametogenic cycle and biochemical composition of the transplanted carpet shell clam Tapes decussatus, Linnaeus 1758 in Sufa (Homa) Lagoon, Izmir, Turkey. Aquaculture, 2009, 293: 81-88 |