[1] Miao X, Hao Y, Tang X, et al. Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China. Chemosphere, 2020, 243: 125337 [2] FAO. The State of World Fisheries and Aquaculture 2020. Rome: FAO, 2020 [3] Arthington AH, Dulvy NK, Gladstone W, et al. Fish conservation in freshwater and marine realms: Status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26: 838-857 [4] Garlock TM, Lorenzen K. Marine angler characteristics and attitudes toward stock enhancement in Florida. Fishe-ries Research, 2017, 186: 439-445 [5] 陈欣怡, 徐开达, 李鹏飞, 等. 浙江近海海洋鱼类增殖放流现状分析. 海洋开发与管理, 2023, 40(9): 128-135 [6] Adriaenssens B, Johnsson JI. Natural selection, plasti-city and the emergence of a behavioural syndrome in the wild. Ecology Letters, 2013, 16: 47-55 [7] Lü H, Fu M, Zhang Z, et al. Marking fish with fluorochrome dyes. Reviews in Fisheries Science & Aquaculture, 2020, 28: 117-135 [8] Delcourt J, Ovidio M, Denoël M, et al. Individual identification and marking techniques for zebrafish. Reviews in Fish Biology and Fisheries, 2018, 28: 839-864 [9] El Sheikha AF, Xu J. Traceability as a key of seafood safety: Reassessment and possible applications. Reviews in Fisheries Science & Aquaculture, 2017, 25: 158-173 [10] Campana SE, Neilson JD. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42: 1014-1032 [11] Assis CA. The lagenar otoliths of teleosts: Their morphology and its application in species identification, phylogeny and systematics. Journal of Fish Biology, 2003, 62: 1268-1295 [12] Mathur S, Jain S, Varma M. Fish otoliths and their significance in taxonomy. Journal of Experimental Zoology India, 2014, 17: 407-410 [13] Zischke MT, Litherland L, Tilyard BR, et al. Otolith morphology of four mackerel species (Scomberomorus spp.) in Australia: Species differentiation and prediction for fisheries monitoring and assessment. Fisheries Research, 2016, 176: 39-47 [14] Schulz-Mirbach T, Stransky C, Schlickeisen J, et al. Differences in otolith morphologies between surface- and cave-dwelling populations of Poecilia mexicana (Teleostei, Poeciliidae) reflect adaptations to life in an extreme habitat. Evolutionary Ecology Research, 2008, 10: 537-558 [15] Paul K, Oeberst R, Hammer C. Evaluation of otolith shape analysis as a tool for discriminating adults of Baltic cod stocks. Journal of Applied Ichthyology, 2013, 29: 743-750 [16] Maisey JG. Notes on the structure and phylogeny of vertebrate otoliths. Copeia, 1988, 1988: 495-499 [17] Cerna F, Saavedra-Nievas JC, Plaza-Pasten G, et al. Ontogenetic and intraspecific variability in otolith shape of anchoveta (Engraulis ringens) used to identify demographic units in the Pacific Southeast off Chile. Marine and Freshwater Research, 2019, 70: 1794-1804 [18] da Costa RMR, Fabré NN, Amadio SA, et al. Plasticity in the shape and growth pattern of asteriscus otolith of black prochilodus Prochilodus nigricans (Teleostei: Characiformes: Prochilodontidae) freshwater Neotropical migratory fish. Neotropical Ichthyology, 2018, 16: e180051 [19] Begg GA, Waldman JR. An holistic approach to fish stock identification. Fisheries Research, 1999, 43: 35-44 [20] Humphries JM. Multivariate discrimination by shape in relation to sizes. Systematic Zoology, 1981, 30: 291-308 [21] Humphris JM, Bookstein FL, Chernoff B, et al. multivariate discrimination by shape in relation to size. Systematic Biology, 1981, 30: 291-308 [22] Strauss RE, Bookstein FL. The truss: Body form reconstructions in morphometrics. Systematic Biology, 1982, 31: 113-135 [23] Bookstein FL. Size and shape spaces for landmark data in two dimensions. Statistical Science, 1986, 1: 181-222 [24] 刘楚珠, 严利平, 李建生, 等. 基于框架法的东黄海日本鲭产卵群体形态差异分析. 中国水产科学, 2011, 18(4): 908-917 [25] 王莹莹, 杨天燕, 孟玮, 等. 中国沿海龙头鱼群体多变量形态特征的比较. 中国水产科学, 2020, 27(10): 1234-1242 [26] 韩霈武, 陈新军, 方舟, 等. 基于鱼体和耳石形态的东海两种鲐属鱼类判别分析. 海洋渔业, 2020, 42(2): 161-169 [27] 赵盛龙, 徐汉祥, 钟俊生, 等. 浙江海洋鱼类志(上). 杭州: 浙江科学技术出版社, 2016: 726-727 [28] 朱元鼎, 伍汉霖, 金鑫渡, 等. 福建鱼类志(下). 福州: 福建科学技术出版社, 1985: 254-255 [29] 王好学, 徐开达, 周永东, 等. 浙江北部海域条石鲷标志放流及回捕调查. 浙江海洋大学学报: 自然科学版, 2022, 41(5): 455-458 [30] 孙中之, 柳学周, 徐永江, 等. 条石鲷人工育苗及养殖技术. 齐鲁渔业, 2009, 26(1): 28-31 [31] 区又君, 廖锐, 李加儿, 等. 利用耳石日轮研究珠江口棘头梅童鱼的产卵期及生长. 应用海洋学学报, 2012, 31(1): 85-88 [32] 方华华, 李翔, 董晓煜. 傅里叶分析在江鳕矢耳石形态中的应用. 水产科学, 2017, 36(3): 364-368 [33] 王英俊, 叶振江, 刘群, 等. 细条天竺鱼(Apogonichthys lineatus)与黑鳃天竺鱼(Apogonichthys arafurae)耳石形态识别的初步研究. 海洋与湖沼, 2010, 41(2): 282-285 [34] 魏联, 钱胡蕊, 杨丹, 等. 基于形态分析探究鳞头犬牙南极鱼各生活史阶段耳石形态变化. 应用生态学报, 2022, 33(4): 1137-1144 [35] 潘晓哲, 高天翔. 基于耳石形态的鱚属鱼类鉴别. 动物分类学报, 2010, 35(4): 799-805 [36] 玄文丹, 谢玉, 朱凯, 等. 基于耳石和鱼体形态的东海海域两种方头鱼判别. 应用生态学报, 2023, 34(2): 527-534 [37] Tzeng TD, Yeh SY. Stock structure of spotted mackerel (Scomber australasicus) in Taiwan inferred from morphometric variation. Journal of the Fishery Society of Taiwan, 2002, 29: 117-128 [38] Beck MW. NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software, 2018, 85: 1-20 [39] Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4: 251-257 [40] Souza AT, Soukalová K, Děd V, et al. Otolith shape variations between artificially stocked and autochthonous pikeperch (Sander lucioperca). Fisheries Research, 2020, 231: 105708 [41] Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: Considerations from population genomics in fishes. Journal of Fish Bio-logy, 2016, 89: 2519-2556 [42] Mille T, Mahé K, Cachera M, et al. Diet is correlated with otolith shape in marine fish. Marine Ecology Progress Series, 2016, 555: 167-184 [43] Qiao J, Zhu R, Chen K, et al. Comparative otolith morphology of two morphs of Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a headwater lake on the Qinghai-Tibet Plateau. Fishes, 2022, 7: 99 [44] 王健鑫, 石戈, 李鹏, 等. 条石鲷消化道的形态学和组织学. 水产学报, 2006, 30(5): 618-626 [45] Hüssy K. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. Journal of Experimental Marine Biology and Ecology, 2008, 364: 35-41 [46] Deville D, Kawai K, Fujita H, et al. Ecomorphology of three closely related Sebastes rockfishes with sympatric occurrence in Seto Inland Sea, Japan. Hydrobiologia, 2023, 850: 4049-4066 [47] Park JM, Kang MG, Kim JH, et al. Otolith morphology as a tool for stock discrimination of three rockfish species in the East Sea of Korea. Frontiers in Marine Science, 2023, 10: 1301178 [48] Mahé K, Gourtay C, Defruit GB, et al. Do environmental conditions (temperature and food composition) affect otolith shape during fish early-juvenile phase? An experimental approach applied to European Seabass (Dicentrarchus labrax). Journal of Experimental Marine Biology and Ecology, 2019, 521: 151239 [49] Coll-Lladó C, Giebichenstein J, Webb PB, et al. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Scientific Reports, 2018, 8: 8384 [50] Holmberg RJ, Wilcox-Freeburg E, Rhyne AL, et al. Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ, 2019, 7: e6152 [51] Erguden D, Turan C. Examination of genetic and morphologic structure of sea-bass populations in Turkish coastal waters. Turkish Journal of Veterinary & Animal Sciences, 2005, 29: 727-733 [52] Smoliński S, Schade FM, Berg F. Assessing the performance of statistical classifiers to discriminate fish stocks using Fourier analysis of otolith shape. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 77: 674-683 [53] Fernández-Delgado M, Cernadas E, Barro S, et al. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 2014, 15: 3133-3181 [54] Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological Modelling, 2000, 135: 147-186 [55] Yu H, Jiang S, Land KC. Multicollinearity in hierarchical linear models. Social Science Research, 2015, 53: 118-136 [56] Zhang X, Mao B, Che Y, et al. Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology. Computers in Biology and Medicine, 2023, 140: 105752 [57] 王嘉浩, 胡桂森, 吴章, 等. 条石鲷自然群体和养殖群体形态差异分析. 浙江大学学报: 农业与生命科学版, 2024, http://kns.cnki.net/kcms/detail/33.1247.S.20240131.0906.002.html [58] 杨林林, 姜亚洲, 刘尊雷, 等. 中国沿海蓝点马鲛繁殖群体的耳石形态差异. 海洋渔业, 2020, 42(3): 287-295 [59] 纪严, 赵峰, 杨琴, 等. 长江口鮻矢耳石形态特征及质量与年龄的关系. 应用生态学报, 2018, 29(3): 953-960 [60] 苏杭. 几何形态测量学法在大洋性头足类种间及种群鉴别中的应用. 硕士论文. 上海: 上海海洋大学, 2017 |