欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (8): 2082-2090.doi: 10.13287/j.1001-9332.202408.006

• 研究论文 • 上一篇    下一篇

辽东山区日本落叶松一级枝条数量及密度预估模型

倪铭岐1, 高慧淋1*, 刘家腾1, 佟艺玟1, 邱瑜1, 邢晖2   

  1. 1沈阳农业大学林学院, 沈阳 110866;
    2辽宁省林业调查规划监测院, 沈阳 110121
  • 收稿日期:2024-05-20 接受日期:2024-06-24 出版日期:2024-08-18 发布日期:2025-02-18
  • 通讯作者: *E-mail: ghl2017@syau.edu.cn
  • 作者简介:倪铭岐, 男, 1998年生, 硕士研究生。主要从事林分生长与收获模型。E-mail: 2245880281@qq.com
  • 基金资助:
    “十四五”国家重点研发计划项目(2023YFD2200801)和林草科技创新发展研究项目(2023132015)

Prediction model for the quantity and density of first-order branches of Larix kaempferi in eastern area of Liaoning Province, China

NI Mingqi1, GAO Huilin1*, LIU Jiateng1, TONG Yiwen1, QIU Yu1, XING Hui2   

  1. 1College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
    2Liaoning Forestry Investigation, Planning and Monitoring Institute, Shenyang 110121, China
  • Received:2024-05-20 Accepted:2024-06-24 Online:2024-08-18 Published:2025-02-18

摘要: 枝条数量作为重要的枝条特征因子,对树冠结构特征、树木生长及木材质量具有重要的影响。本研究以辽宁省清原县大孤家林场日本落叶松人工林为研究对象,基于负二项分布模型构建包含水枝的日本落叶松一级枝条数量混合效应预估模型,又基于负指数模型构建包含水枝的日本落叶松一级枝条密度混合效应预估模型。结果表明: 对于一级枝条数量模型来说,考虑样木水平的混合效应模型可以有效地降低异方差性和自相关性,拟合效果优于传统模型。模拟结果表明,树木的冠长率越大,枝条的数量越多。将最优一级枝条数量基础模型的截距作为随机效应参数的混合效应模型被确定为最优模型,其Ra2=0.552,均方根误差为7.242。对于一级枝条密度来说,考虑样木水平的混合模型同样降低了模型的异方差性和自相关性,枝条的密度随着冠长率的增大而增大。将最优的一级枝条密度基础模型的截距与着枝深度作为随机效应参数的混合效应模型被确定为最优模型,其Ra2=0.792,均方根误差为4.447。本研究构建的日本落叶松枝条数量及密度模型为制定科学的森林经营方案以提高木材质量奠定了重要基础。

关键词: 日本落叶松, 枝条数量, 枝条密度, 混合效应

Abstract: As an important branch characteristic factor, the quantity of branches could influence crown structure, tree growth, and wood quality. Taking Larix kaempferi plantation in Dagujia Forest Farm, Qingyuan County, Liao-ning Province as the research object, we developed a mixed effect prediction model of the first-order branches quantity of L. kaempferi including sprouting branches based on the negative binomial distribution model, and a mixed effect prediction model of the first-order branches density of L. kaempferi including sprouting branches based on the negative exponential model. The results showed that the mixed effect model considering sample level as the random effect effectively decreased the heteroscedasticity and autocorrelation. The fitting goodness was better than the traditional model. The quantity of the first-order branches increased with increasing crown ratio. The mixed effect model with the basic model intercept of the first-order branches quantity as the random effect parameter was determined as the optimal model, with Ra2=0.552 and the RMSE=7.242. As for the density of the first-order branches, the heteroscedasticity and autocorrelation were also reduced when the random effect was added. The density of the first-order increased with increasing crown ratio. The mixed effect model with the basic model intercept of the first-order branches density model and branch depth as random effects was determined as the optimal model, with Ra2=0.792 and the RMSE=4.447. The model for branch quantity and density of L. kaempferi constructed would lay an important foundation for making scientific forest management plans and improving wood quality.

Key words: Larix kaempferi, branch quantity, branch density, mixed effect