应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2322-2337.doi: 10.13287/j.1001-9332.202409.006
王绪高1,2, 吕晓涛1,2, 郗凤明1,2, 刘志华1,2, 梁宇1,2, 高添1,2, 孙涛1,2, 于大炮1,2, 王超1,2, 马强1,2, 梁超1,2, 郑甜甜1,2, 王娇月1,2, 尹岩1,2, 焦珂伟1,2, 刘波1,2, 朱教君1,2*
收稿日期:
2023-12-11
接受日期:
2024-07-23
出版日期:
2024-09-18
发布日期:
2025-03-18
通讯作者:
* E-mail: jiaojunzhu@iae.ac.cn
作者简介:
王绪高, 男, 1980年生, 研究员。主要从事森林生物多样性维持和功能研究。E-mail: wangxg@iae.ac.cn
基金资助:
WANG Xugao1,2, LYU Xiaotao1,2, XI Fengming1,2, LIU Zhihua1,2, LIANG Yu1,2, GAO Tian1,2, SUN Tao1,2, YU Dapao1,2, WANG Chao1,2, MA Qiang1,2, LIANG Chao1,2, ZHENG Tiantian1,2, WANG Jiaoyue1,2, YIN Yan1,2, JIAO Kewei1,2, LIU Bo1,2, ZHU Jiaojun1,2*
Received:
2023-12-11
Accepted:
2024-07-23
Online:
2024-09-18
Published:
2025-03-18
摘要: 提升陆地生态系统碳汇是减缓气候变化、实现“碳中和”的主要措施之一。东北地区是我国陆地生态系统碳汇的核心贡献区,厘清该区碳汇现状及未来变化特征对实现我国“碳中和”目标至关重要。本文从碳汇时空格局、碳汇驱动机制、增汇技术与潜力评估等方面,综述了东北陆地生态系统碳汇研究的进展。由于数据来源与研究手段不同,东北陆地碳汇计量存在较大的不确定性,尤其是森林碳汇估测结果差异较大(0.020~0.157 Pg C·a-1)。碳汇功能取决于植物-土壤-大气界面之间的碳交换过程,但对于东北地区不同时空尺度下碳汇提升的关键路径尚不清晰。提升陆地生态系统质量是东北地区固碳增汇的关键与核心,但由于不同生态系统有其独特的时空变化特征,亟待建立适合“双碳”目标下的多生态系统协同的固碳增汇技术体系。未来研究需发展融合多源数据与多尺度技术手段的碳汇精准计量体系,准确评估东北陆地碳汇功能与增汇潜力,聚焦碳汇功能的多尺度驱动机制,创新发展适合东北陆地生态系统协同提升的增汇技术体系,并开展增汇技术示范,为“碳中和”目标的实现提供科技支撑。
王绪高, 吕晓涛, 郗凤明, 刘志华, 梁宇, 高添, 孙涛, 于大炮, 王超, 马强, 梁超, 郑甜甜, 王娇月, 尹岩, 焦珂伟, 刘波, 朱教君. 东北陆地生态系统碳汇现状与研究展望[J]. 应用生态学报, 2024, 35(9): 2322-2337.
WANG Xugao, LYU Xiaotao, XI Fengming, LIU Zhihua, LIANG Yu, GAO Tian, SUN Tao, YU Dapao, WANG Chao, MA Qiang, LIANG Chao, ZHENG Tiantian, WANG Jiaoyue, YIN Yan, JIAO Kewei, LIU Bo, ZHU Jiaojun. Current status and research prospects of terrestrial ecosystem carbon sink in Northeast China[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2322-2337.
[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2021 [2] Fang JY, Yu GR, Liu LL, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4015-4020 [3] Wang J, Feng L, Palmer PI, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586: 720-723 [4] 朴世龙, 何悦, 王旭辉, 等. 中国陆地生态系统碳汇估算: 方法、进展、展望. 中国科学:地球科学, 2022, 52(6): 1010-1020 [5] Tang XL, Zhao X, Bai YF, et al. Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4021-4026 [6] 张佳宝, 孙波, 朱教君, 等. 黑土地保护利用与山水林田湖草沙系统的协调及生态屏障建设战略. 中国科学院院刊, 2021, 36(10): 1155-1164 [7] 朱教君, 张秋良, 王安志, 等. 东北地区森林生态系统质量与功能提升对策建议. 陆地生态系统与保护学报, 2022, 2(5): 41-48 [8] Piao SL, Fang JY, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1013 [9] 李洁, 张远东, 顾峰雪, 等. 中国东北地区近50年净生态系统生产力的时空动态. 生态学报, 2014, 34(6): 1490-1502 [10] Liu JZ, Yuan FH, Chen N, et al. Terrestrial net ecosystem productivity in China during 1900-2100. Ecosystem Health and Sustainability, 2023, 9: 0139 [11] 张璐, 王静, 施润和. 2000—2010年东北三省碳源汇时空动态遥感研究. 华东师范大学学报: 自然科学版, 2015(4): 164-173 [12] He W, Jiang F, Wu MS, et al. China's terrestrial carbon sink over 2010-2015 constrained by satellite observations of atmospheric CO2 and land surface variables. Journal of Geophysical Research: Biogeosciences, 2022, 127: e2021JG006644 [13] Xu L, Yu GR, He NP, et al. Carbon storage in China's terrestrial ecosystems: A synthesis. Scientific Reports, 2018, 8: 2806 [14] 岳丹丹, 张军辉, 孙国栋, 等. LPJ-WHyMe模型对1997—2010年中国东北地区潜在植被分布和碳循环的模拟研究. 气候与环境研究, 2019, 24(6): 678-692 [15] 周姝含, 曹永强, 么嘉棋, 等. 东北三省碳源/汇和碳盈亏时空分布与影响因素. 生态学报, 2023, 43(22): 9266-9280 [16] 王绍强, 周成虎, 刘纪远, 等. 东北地区陆地碳循环平衡模拟分析. 地理学报, 2001, 56(4): 390-400 [17] He NP, Wen D, Zhu JX, et al. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Global Change Biology, 2017, 23: 1575-1584 [18] 国家林业与草原局. 中国森林资源报告(2014—2018). 北京: 中国林业出版社, 2019 [19] Yu GR, Zhu XJ, Fu YL, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 2013, 19: 798-810 [20] Piao SL, He Y, Wang XH, et al. Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 2022, 65: 641-651 [21] 孙滨峰, 赵红, 逯非, 等. 东北森林带森林生态系统固碳服务空间特征及其影响因素. 生态学报, 2018, 38(14): 4975-4983 [22] 王耀, 梁宇, 刘波, 等. 东北地区森林地上碳储量动态及固碳潜力预测[EB/OL]. (2024-08-16)[2024-08-16]. 生态学杂志. https://link.cnki.net/urlid/21.1148.Q.20240816.1546.002 [23] 王宇, 周广胜, 贾丙瑞, 等. 中国东北地区阔叶红松林与兴安落叶松林的碳通量特征及其影响因子比较. 生态学报, 2010, 30(16): 4376-4388 [24] Liu F, Wang XC, Wang CK, et al. Environmental and biotic controls on the interannual variations in CO2 fluxes of a continental monsoon temperate forest. Agricultural and Forest Meteorology, 2021, 296: 108232 [25] Wang HM, Saigusa N, Zu YG, et al. Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China. Journal of Forestry Research, 2008, 19: 1-10 [26] Ge R, He HL, Ren XL, et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Global Change Biology, 2019, 25: 938-953 [27] Chen YZ, Mu SJ, Sun ZG. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 2016, 69: 84-94 [28] 佘玮, 黄璜, 官春云, 等. 我国典型农作区作物生产碳汇功能研究. 中国工程科学, 2016, 18(1): 106-113 [29] Ren YX, Mao DH, Li XY, et al. Aboveground biomass of marshes in Northeast China: Spatial pattern and annual changes responding to climate change. Frontiers in Ecology and Evolution, 2022, 10: 1043811 [30] Xing W, Bao KS, Gallego-Sala AV, et al. Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Science Reviews, 2015, 115: 78-88 [31] Zhang L, Zhou GS, Ji YH, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China. Science China Earth Sciences, 2016, 59: 1946-1958 [32] 谢立军, 白中科, 杨博宇, 等. 碳中和背景下国内外陆地生态系统碳汇评估方法研究进展. 地学前缘, 2023, 30(2): 447-462 [33] 赵卉忱, 贾根锁, 王鹤松, 等. 中国半干旱区草甸草原和典型草原碳通量日变化特征. 气候与环境研究, 2020, 25(2): 172-184 [34] You CH, Wang YB, Tan XR. Inner Mongolia grasslands act as a weak regional carbon sink: A new estimation based on upscaling eddy covariance observations. Agricultural and Forest Meteorology, 2023, 342: 109719 [35] Zhang Z, Zhou JQ, Yan YC, et al. Estimating the impact of climate change on the carbon exchange of a temperate meadow steppe in China. Ecological Indicators, 2022, 140: 109055 [36] 汪景宽, 徐香茹, 裴久渤, 等. 东北黑土地区耕地质量现状与面临的机遇和挑战. 土壤通报, 2021, 52(3): 695-701 [37] 赵明月, 刘源鑫, 张雪艳. 农田生态系统碳汇研究进展. 生态学报, 2022, 42(23): 9405-9416 [38] 张立, 金晶泽, 姜侠, 等. 1986—2019年黑龙江省松嫩平原表层土壤有机碳变化及固碳潜力估算. 现代地质, 2021, 35(4): 914-922 [39] Zhang F, Wang SH, Zhao MS, et al. Regional simulation of soil organic carbon dynamics for dry farmland in Northeast China using the CENTURY model. PLoS ONE, 2021, 16(1): e0245040 [40] Ren YX, Li XY, Mao DH, et al. Northeast China holds huge wetland soil organic carbon storage: An estimation from 819 soil profiles and random forest algorithm. Plant and Soil, 2023, 490: 469-483 [41] Ren YX, Mao DH, Wang ZM, et al. China's wetland soil organic carbon pool: New estimation on pool size, change, and trajectory. Global Change Biology, 2023, 29: 6139-6156 [42] 王彪. 中国东北温带森林湿地碳储量与碳源/汇研究. 博士论文. 哈尔滨: 东北林业大学, 2023 [43] Zhang ZS, Craft CB, Xue ZS, et al. Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, Northeast China. Ecological Indicators, 2016, 70: 114-124 [44] Chapin FS, Matson PA, Vitousek PM. Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2011 [45] Barron-Gafford G, Martens D, Grieve K, et al. Growth of Eastern Cottonwoods (Populus deltoides) in elevated [CO2] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Global Change Biology, 2005, 11: 1220-1233 [46] Yuan ZQ, Ali A, Sanaei A, et al. Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. Forest Ecology and Management, 2021, 481: 118698 [47] Gabriel D, Sait SM, Hodgson JA, et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales. Ecology Letters, 2010, 13: 858-869 [48] Yuan ZQ, Ali A, Wang SP, et al. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 2018, 630: 422-431 [49] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 1-6 [50] García-Palacios P, Crowther TW, Dacal M, et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment, 2021, 2: 507-517 [51] Gao MX, Zhu FF, Hobbie EA, et al. Effects of nitrogen deposition on carbon allocation between wood and leaves in temperate forests. Plants, People, Planet, 2023, 5: 267-280 [52] Wang XY, Zhao CY, Jia QY. Impacts of climate change on forest ecosystems in Northeast China. Advances in Climate Change Research, 2013, 4: 230-241 [53] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 2019, 49(9): 1321-1334 [54] Ma TX, Liang Y, Li ZY, et al. Age-related patterns and climatic driving factors of drought-induced forest mortality in Northeast China. Agricultural and Forest Meteorology, 2023, 332: 109360 [55] Huang C, He HS, Liang Y, et al. The changes in species composition mediate direct effects of climate change on future fire regimes of boreal forests in northeastern China. Journal of Applied Ecology, 2021, 58: 1336-1345 [56] 贺红士, 常禹, 胡远满, 等. 森林可燃物及其管理的研究进展与展望. 植物生态学报, 2010, 34(6): 741-752 [57] 周幼吾, 郭东信. 我国多年冻土的主要特征. 冰川冻土, 1982(1): 1-19 [58] Miner KR, Turetsky MR, Malina E, et al. Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 2022, 3: 55-67 [59] Gibson CM, Chasmer LE, Thompson DK, et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nature Communications, 2018, 9: 3041 [60] Zhao HC, Jia GS, Wang HS, et al. Seasonal and interannual variations in carbon fluxes in East Asia semi-arid grasslands. Science of the Total Environment, 2019, 668: 1128-1138 [61] Hasi M, Zhang X, Niu GX, et al. Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 2021, 304-305: 108389 [62] Wang YB, Meng B, Zhong SZ, et al. Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant and Soil, 2018, 432: 259-272 [63] Yu S, Jiang L, Du WL, et al. Estimation and spatio-temporal patterns of carbon emissions from grassland fires in Inner Mongolia, China. Chinese Geographical Science, 2020, 30: 572-587 [64] Xu WH, Wan SQ. Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biology and Biochemistry, 2008, 40: 679-687 [65] Pellegrini AFA, Reich PB, Hobbie SE, et al. Soil carbon storage capacity of drylands under altered fire regimes. Nature Climate Change, 2023, 13: 1089-1094 [66] Chang Q, Xu TT, Ding SW, et al. Herbivore assemblage as an important factor modulating grazing effects on ecosystem carbon fluxes in a meadow steppe in Northeast China. Journal of Geophysical Research: Biogeosciences, 2020, 125: e2020JG005652 [67] Deng L, Shangguan ZP, Bell SM, et al. Carbon in Chinese grasslands: Meta-analysis and theory of grazing effects. Carbon Research, 2023, 2: 19 [68] Jackson R, Lajtha K, Crow S, et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 419-445 [69] Ma T, Dai GH, Zhu SS, et al. Distribution and preservation of root- and shoot-derived carbon components in soils across the Chinese-Mongolian grasslands. Journal of Geophysical Research: Biogeosciences, 2019, 124: 420-431 [70] Ma T, Zhu SS, Wang ZH, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9: 3480 [71] Bai YF, Cotrufo MF. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022, 377: 603-608 [72] Hao XX, Han XZ, Wang C, et al. Temporal dynamics of density separated soil organic carbon pools as revealed by δ13C changes under 17 years of straw return. Agriculture, Ecosystems & Environment, 2023, 356: 108656 [73] Yang YL, Xie HT, Mao Z, et al. Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands. Soil Biology and Biochemistry, 2022, 167: 108587 [74] Bossio DA, Cook-Patton SC, Ellis PW, et al. The role of soil carbon in natural climate solutions. Nature Sustainability, 2020, 3: 391-398 [75] 金琳, 李玉娥, 高清竹, 等. 中国农田管理土壤碳汇估算. 中国农业科学, 2008, 41(3): 734-743 [76] Zhao ZH, Gao SF, Lu CY, et al. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice-wheat rotation system. Soil and Tillage Research, 2021, 212: 105071 [77] Yang YL, Bao XL, Xie HT, et al. Frequent stover mulching builds healthy soil and sustainable agriculture in Mollisols. Agriculture, Ecosystems & Environment, 2022, 326: 107815 [78] 贺美, 王立刚, 王迎春, 等. 黑土活性有机碳库与土壤酶活性对玉米秸秆还田的响应. 农业环境科学学报, 2018, 37(9): 1942-1951 [79] 罗怀良. 中国农田作物植被碳储量研究进展. 生态环境学报, 2014, 23(4): 692-697 [80] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算. 中国科学: 地球科学, 2007, 37(6): 804-812 [81] Whiting GJ, Chanton JP. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B, 2001, 53: 521-528 [82] Zhang D, Gong C, Zhang WG, et al. Labile carbon addition alters soil organic carbon mineralization but not its temperature sensitivity in a freshwater marsh of Northeast China. Applied Soil Ecology, 2021, 160: 103844 [83] 张秀, 赵永存, 谢恩泽, 等. 土壤有机碳时空变化研究进展与展望. 农业环境科学学报, 2020, 39(4): 673-679 [84] Li XY, Jin HJ, He RX, et al. Impact of wildfire on soil carbon and nitrogen storage and vegetation succession in the Nanweng'he National Natural Wetlands Reserve, Northeast China. Catena, 2023, 221: 106797 [85] Gao CY, Wang GP, Santin C, et al. Response of Calamagrostis angustifolia to burn frequency and seasonality in the Sanjiang Plain wetlands (Northeast China). Journal of Environmental Management, 2021, 300: 113759 [86] 宋长春, 宋艳宇, 王宪伟, 等. 气候变化下湿地生态系统碳、氮循环研究进展. 湿地科学, 2018, 16(3): 424-431 [87] 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22 [88] Xue ZS, Jiang M, Zhang ZS, et al. Simulating potential impacts of climate changes on distribution pattern and carbon storage function of high-latitude wetland plant communities in the Xing'anling Mountains, China. Land Degradation & Development, 2021, 32: 2704-2714 [89] Mao DH, Wang ZM, Li L, et al. Quantitative assessment of human-induced impacts on marshes in Northeast China from 2000 to 2011. Ecological Engineering, 2014, 68: 97-104 [90] Bao KS, Zhang YF, Zaccone C, et al. Human impact on C/N/P accumulation in lake sediments from northeast China during the last 150 years. Environmental Pollution, 2021, 271: 116345 [91] 于贵瑞, 朱剑兴, 徐丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案. 中国科学院院刊, 2022, 37(4): 490-501 [92] 何兴元, 王宗明, 郑海峰. 东北地区重大生态工程生态成效评估. 北京: 科学出版社, 2020 [93] Zhu JJ, Sun YR, Zheng X, et al. A large carbon sink induced by the implementation of the largest afforestation program on Earth. Ecological Processes, 2023, 12: 44 [94] 胡会峰, 刘国华. 中国天然林保护工程的固碳能力估算. 生态学报, 2006, 26(1): 291-296 [95] 刘博杰, 逯非, 王效科, 等. 中国天然林资源保护工程温室气体排放及净固碳能力. 生态学报, 2016, 36(14): 4266-4278 [96] 刘博杰, 张路, 逯非, 等. 中国退耕还林工程温室气体排放与净固碳量. 应用生态学报, 2016, 27(6): 1693-1707 [97] Lu F, Hu HF, Sun WJ, et al. Effects of national ecologi-cal restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4039-4044 [98] 肖文发, 朱建华, 曾立雄, 等. 森林碳汇助力碳中和的几点认识. 林业科学, 2023, 59(3): 1-11 [99] Lu N, Tian HQ, Fu BJ, et al. Biophysical and economic constraints on China's natural climate solutions. Nature Climate Change, 2022, 12: 847-853 [100] 徐浩, 岳超, 朴世龙. 科学规划植树造林把握森林碳汇对“碳中和”战略的服务窗口期. 中国科学:地球科学, 2023, 53(12): 3010-3014 [101] Gang Q, Yan QL, Zhu JJ. Effects of thinning on early seed regeneration of two broadleaved tree species in larch plantations: implication for converting pure larch plantations into larch-broadleaved mixed forests. Forestry, 2015, 88: 573-585 [102] Zhu JJ, Yang K, Yan QL, et al. Feasibility of implementing thinning in even-aged Larix olgensis plantations to develop uneven-aged larch-broadleaved mixed forests. Journal of Forest Research, 2010, 15: 71-80 [103] 舒洋, 周梅, 赵鹏武, 等. 大兴安岭根河雷击火干扰后地表死可燃物负荷及影响因子. 生态环境学报, 2021, 30(12): 2317-2323 [104] 付晓, 张煜星, 王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58(2): 32-41 [105] Liu SN, Zhou T, Wei LY, et al. The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin, 2012, 57: 1699-1707 [106] 田惠玲, 朱建华, 何潇, 等. 基于随机森林模型的东北三省乔木林生物质碳储量预测. 林业科学, 2022, 58(4): 40-50 [107] 蔡伟祥, 徐丽, 李明旭, 等. 2010—2060年中国森林生态系统固碳速率省际不平衡性及调控策略. 地理学报, 2022, 77(7): 1808-1820 [108] Cai WX, He NP, Li M, et al. Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 2021, 67: 836-843 [109] 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 2020, 35(6): 675-689 [110] Hu ZM, Li SG, Guo Q, et al. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 2016, 22: 1385-1393 [111] 方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应: 中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展. 中国科学院院刊, 2015, 30(6): 848-857 [112] Song J, Wan SQ, Peng SS, et al. The carbon sequestration potential of China's grasslands. Ecosphere, 2018, 9: e02452 [113] 那佳, 黄立华, 张璐, 等. 我国东北草地生产力现状及可持续发展对策. 中国草地学报, 2019, 41(6): 152-164 [114] FAO. Learning Tool on Nationally Appropriate Mitigation Actions (NAMAs) in the Agriculture, Forestry and Other Land Use (AFOLU) Sector. Rome: FAO, 2015 [115] 刘文平, 潘影, 肖玉, 等. 中国耕地固碳增汇潜力与建议. 中国农业综合开发, 2022(5): 6-10 [116] Lu F, Wang XK, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland. Global Change Biology, 2009, 15: 281-305 [117] 刘苗, 刘国华. 土壤有机碳储量估算的影响因素和不确定性. 生态环境学报, 2014, 23(7): 1222-1232 [118] 林飞燕. 中国农田土壤固碳增汇潜力的秸秆还田措施模拟研究. 硕士论文. 武汉: 华中师范大学, 2013 [119] 任凤玲. 不同施肥下我国典型农田土壤有机碳固定特征及驱动因素. 博士论文. 北京: 中国农业科学院, 2022 [120] 刘晓永, 王秀斌, 李书田. 中国农田畜禽粪尿氮负荷量及其还田潜力. 环境科学, 2018, 39(12): 5723-5739 [121] 中国农业年鉴编辑委员会. 中国农业年鉴2019. 北京: 中国农业出版社, 2020 [122] Griscom BW, Adams J, Ellis PW, et al. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 11645-11650 [123] Mao DH, YangH, Wang ZM, et al. Reverse the hidden loss of China's wetlands. Science, 2022, 376: 1061 [124] 张骁栋, 朱建华, 张小全, 等. 中国湿地碳汇功能的提升途径. 自然保护地, 2022, 2(3): 17-23 [125] 张广帅, 蔡悦荫, 闫吉顺, 等. 滨海湿地碳汇潜力研究及碳中和建议: 以辽河口盐沼湿地为例. 环境影响评价, 2021, 43(5): 18-22 [126] 杨富亿, 李秀军, 刘兴土. 沼泽湿地生物碳汇扩增与碳汇型生态农业利用模式. 农业工程学报, 2012, 28(19): 156-162 [127] Song CC, Wang LL, Tian HQ, et al. Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: A 5 year nitrogen addition experiment. Journal of Geophysical Research: Biogeosciences, 2013, 118: 741-751 [128] 陈吉龙, 何蕾, 温兆飞, 等. 辽河三角洲河口芦苇沼泽湿地植被固碳潜力. 生态学报, 2017, 37(16): 5402-5410 [129] 郭江源, 郭伟, 毕娜, 等. 丛枝菌根真菌对不同含盐量湿地土壤中芦苇生长的影响. 环境科学, 2015, 36(4): 1481-1488 [130] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学:生命科学, 2022, 52(4): 534-574 [131] 高添, 朱教君, 张金鑫, 等. 基于新一代信息技术的温带森林生态系统碳通量精准计量. 数据与计算发展前沿, 2023, 5(2): 60-72 [132] 朱教君, 高添, 张金鑫, 等. 以“塔群”为核心的“立体-全息”森林生态系统信息化观测研究方法体系. 生态学杂志, 2023, 42(12): 3050-3054 |
[1] | 李方昊, 范昊明, 石昊, 许秀泉. 东北地区极端大风时空分布特征及其对风蚀量的影响 [J]. 应用生态学报, 2024, 35(1): 87-94. |
[2] | 王世豪, 徐新良, 黄麟, 赵广. 1980s—2010s东北农田土壤养分时空变化特征 [J]. 应用生态学报, 2023, 34(4): 865-875. |
[3] | 陈腊, 米国华, 李可可, 邵慧, 胡栋, 杨俊鹏, 隋新华, 陈文新. 多功能植物根际促生菌对东北黑土区玉米的促生效果 [J]. 应用生态学报, 2020, 31(8): 2759-2766. |
[4] | 石健, 黄颖利. 东北地区生态资本效率时空差异与影响因素 [J]. 应用生态学报, 2019, 30(10): 3527-3534. |
[5] | 初征,郭建平. 东北地区玉米适应气候变化措施对生产潜力的影响 [J]. 应用生态学报, 2018, 29(6): 1885-1892. |
[6] | 陈浩, 李正国, 唐鹏钦, 胡亚南, 谭杰扬, 刘珍环, 游良志, 杨鹏. 气候变化背景下东北水稻的时空分布特征 [J]. 应用生态学报, 2016, 27(8): 2571-2579. |
[7] | 侯雯嘉,耿婷,陈群,陈长青**. 近20年气候变暖对东北水稻生育期和产量的影响 [J]. 应用生态学报, 2015, 26(1): 249-259. |
[8] | 杜国明1,2**,潘涛1,尹哲睿1,董金玮3. 水田化进程中的富锦市耕地景观格局演化规律 [J]. 应用生态学报, 2015, 26(1): 207-214. |
[9] | 董张玉1,2,刘殿伟1**,王宗明1,任春颖1,汤旭光1,2,贾明明1,2,汪燕3. 基于空间分析的东北地区湿地优先恢复 [J]. 应用生态学报, 2013, 24(1): 170-176. |
[10] | 杨富亿1**,吕宪国1,娄彦景1,娄晓楠1,薛滨2,姚书春2,肖海丰3. 东北地区火山堰塞湖鱼类区系与群落多样性 [J]. 应用生态学报, 2012, 23(12): 3449-3457. |
[11] | 冶明珠1,2,郭建平2**,袁彬2,赵俊芳2. 气候变化背景下东北地区热量资源及玉米温度适宜度 [J]. 应用生态学报, 2012, 23(10): 2786-2794. |
[12] | 于文颖,纪瑞鹏,冯锐,赵先丽,张玉书**. 东北地区玉米生长发育特征及其对热量的响应 [J]. 应用生态学报, 2012, 23(05): 1295-1302. |
[13] | 赵国帅,王军邦,范文义,应天玉. 2000-2008年中国东北地区植被净初级生产力的模拟及季节变化 [J]. 应用生态学报, 2011, 22(03): 621-630. |
[14] | 杨育红;阎百兴. 中国东北地区非点源污染研究进展 [J]. 应用生态学报, 2010, 21(3): 777-784. |
[15] | 刘昕;国庆喜. 基于移动窗口法的中国东北地区景观格局 [J]. 应用生态学报, 2009, 20(06): 1415-1422 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||