[1] |
Klein T, Hartmann H. Climate change drives tree mortality. Science, 2018, 362: 758
|
[2] |
张德顺, 章丽耀, 胡立辉, 等. 城市绿化树木的日灼伤害研究. 中国城市林业, 2018, 16(4): 27-32
|
[3] |
李双双, 杨赛霓, 张东海, 等. 近54年京津冀地区热浪时空变化特征及影响因素. 应用气象学报, 2015, 26(5): 545-554
|
[4] |
史军, 梁萍, 万齐林, 等. 城市气候效应研究进展. 热带气象学报, 2011, 27(6): 942-951
|
[5] |
Osone Y, Kawarasak S, Ishida A, et al. Responses of gas-exchange rates and water relations to annual fluctuations of weather in three species of urban street trees. Tree Physiology, 2014, 34: 1056-1068
|
[6] |
包一凡, 叶禹梁, 张一迪. 全球气候变暖对全球水资源的影响. 城市建设理论研究: 电子版, 2017(17): 169
|
[7] |
Hartmann H, Ziegler W, Kolle O, et al. Thirst beats hunger: Declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 2013, 200: 340-349
|
[8] |
Anderegg WRL, Alan F, Huang CY, et al. Tree mortality predicted from drought-induced vascular damage. Nature Geoscience, 2015, 8: 367-371
|
[9] |
Adams HD, Zeppel MJ, Anderegg WR, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 2017, 1: 1289-1291
|
[10] |
Sevanto S, McDowell NG, Dickman LT, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 2014, 37: 153-161
|
[11] |
张德顺, 刘哲. 城市绿化树木的抗旱性研究进展. 中国城市林业, 2017, 15(2): 1-5
|
[12] |
陈颖佳, 刘中兵. 城市道路大气中粉尘浓度的时空变异及滞尘植物配置研究. 湖北农业科学, 2018, 57(4): 51-55
|
[13] |
Choat B, Brodersen CR, Mcelrone A. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytologist, 2015, 205: 1095-1105
|
[14] |
Meinzer FC, Mcculloh KA. Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? Tree Physiology, 2013, 33: 331-334
|
[15] |
Choat B, Brodeibb TJ, Brodersen CR, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539
|
[16] |
Anderegg WRL, Berry JA, Smith DD, et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceeding of the National Academy of Sciences of the United States of America, 2012, 109: 233-237
|
[17] |
McDowell N, Pockma WT, Allen CD, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 2008, 178: 719-739
|
[18] |
Adams HD, Germino MJ, Breshears DD, et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 2013, 197: 1142-1151
|
[19] |
Galvez DA, Landhäusser SM, Tyree MT. Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytologyst, 2013, 198: 139-148
|
[20] |
Dietze MC, Sala A, Carbone MS, et al. Nonstructural carbon in woody plants. Annual Review of Plant Biology, 2014, 65: 667-687
|
[21] |
Wang AY, Han SJ, Zhang JH, et al. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree Physiology, 2018, 38: 1782-1804
|
[22] |
Tadeja S, Stefano B, Salvatore B, et al. Drought-induced xylem cavitation and hydraulic deterioration: Risk factors for urban trees under climate change? New Phytologist, 2015, 205: 1106-1116
|
[23] |
李品, 周慧敏, 冯兆忠. 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响. 环境科学, 2021, 42(2): 1004-1012
|
[24] |
Bainian S, David LD, David JB, et al. Leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 7141-7146
|
[25] |
Beerling DJ, Royer DL. Reading a CO2 signal from fossil stomata. New Phytologist, 2002, 153: 387-397
|
[26] |
Chen LQ, Li CS, Chaloner WG, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany, 2001, 88: 1309-1315
|
[27] |
Matsumoto K, Ohta T, Irasawa M, et al. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology, 2003, 9: 1634-1642
|
[28] |
杜榕, 田丰, 刘莉霞. 利用NCEP再分析数据解析天气——以2018年沈阳高温天气为例. 中国科技信息, 2019(12): 62-63
|
[29] |
徐岚, 田伟, 荆晓梅, 等. 沈阳市街路银杏生理抗性初探. 农业科技与信息: 现代园林, 2008(4): 63-65
|
[30] |
于少帅, 赵文霞, 姚艳霞, 等. 新疆野苹果枯枝症状级别与水杨酸含量、胸径关系研究.林业科学研究, 2019, 32(2): 111-116
|
[31] |
Sperry JS, Donnelly JR, Tyree MT. A method for mea-suring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 1988, 11: 35-40
|
[32] |
Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology, 1989, 40: 19-38
|
[33] |
Alder NN, Pockman WT, Sperry JS, et al. Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 1997, 48: 665-674
|
[34] |
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异. 应用生态学报, 2018, 29(2): 352-360
|
[35] |
Seifter S, Muntwyler E, Harkness DM. Some effects of continued protein deprivation, with and without methionine supplementation, on intracellular liver components. Proceedings of the Society for Experimental Biology and Medicine, 2016, 75: 46-50
|
[36] |
Sperry JS, Nichols KL, Eastlack SE. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 1994, 75: 1736-1752
|
[37] |
Allen CD, Macalady AK, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259: 660-684
|
[38] |
Michaelian M, Hogg EH, Hall RJ, et al. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Global Change Biology, 2011, 17: 2084-2094
|
[39] |
Andeeregg WRL, Plavcova L, Anderegg LDL, et al. Drought's legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Global Change Biology, 2013, 19: 1188-1196
|
[40] |
谢东锋, 马履一, 王华田. 7种造林树种木质部栓塞脆弱性研究. 浙江林学院学报, 2004(2): 138-143
|
[41] |
Sara B, Daniel B, Simone F, et al. Persistent decay of fresh xylem hydraulic conductivity varies with pressure gradient and marks plant responses to injury. Plant, Cell & Environment, 2020, 44: 371-386
|
[42] |
Choat B, Jansen S, Brodribb TJ, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-756
|
[43] |
Peters RL, Steppe K, Cuny H, et al. Turgor: A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 2020, 229: 213-229
|
[44] |
倪福太, 王淑范, 李长友, 等. 四种裸子植物木质部的比较研究. 吉林师范大学学报: 自然科学版, 2010, 31(1): 64-66
|
[45] |
牟凤娟, 李军萍, 陈丽萍, 等. 裸子植物形态解剖结构特征与抗旱性研究进展. 福建林业科技, 2016, 43(3): 237-243
|
[46] |
Powles SB. Photoinhibition of photosynthesis induced by visible light. Annual Review Plant Physiology, 1984, 35: 15-44
|
[47] |
Kozolowsk TT, Kramer PJ, Pallardy SG, et al. The physiological ecology of woody plants. Tree Physiology, 1991, 80: 213-272
|
[48] |
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees: From what we can measure to what we want to know. New Phytologist, 2016, 211: 386-403
|
[49] |
Ramirez JA, Handa IT, Posada JM, et al. Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban Forestry & Urban Greening, 2018, 30: 24-31
|
[50] |
Juliana SG, Mariana G, Monika S. Learning about spatial inequalities: Capturing the heterogeneity in the urban environment. Journal of Cleaner Production, 2019, 23: 1-11
|
[51] |
刘敏, 伏玉玲, 杨芳. 基于涡度相关技术的城市碳通量研究进展. 应用生态学报, 2014, 25(2): 611-619
|
[52] |
刘晓, 周伟, 王文杰. 哈尔滨行道树的空间异质性分析. 植物研究, 2019, 39(4): 590-597
|