[1] Schwalm CR, Anderegg WRL, Michalak AM, et al. Global patterns of drought recovery. Nature, 2017, 548: 202-205 [2] Bartholomeus RP, Witte JM, van Bodegom PM, et al. Climate change threatens endangered plant species by stronger and interacting water-related stresses. Journal of Geophysical Research, 2011, 116: G04023 [3] Lee BR, Muneer S, Avice JC, et al. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza, 2012, 22: 525-534 [4] O'Brien MJ, Leuzinger S, Philipson CD, et al. Drought survival of tropical tree seedlings enhanced by nonstructural carbohydrate levels. Nature Climate Change, 2014, 4: 710-714 [5] Fan HB, Wu JP, Liu WF, et al. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 2015, 392: 127-138 [6] Liu QQ, Huang ZJ, Wang ZN, et al. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to sha-ding. BMC Plant Biology, 2020, 20: 354 [7] Smith SE, Read D. Mycorrhizal Symbiosis. 3rd Ed. Pittsburgh: Academic Press, 2008 [8] Aroca R, Porcel R, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic pro-perties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 2007, 173: 808-816 [9] Asrar AA, Abdel-Fattah GM, Elhindi KM. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 2012, 50: 305-316 [10] Yamato M, Takahashi H, Shimono A, et al. Distribution of Petrosavia sakuraii (Petrosaviaceae), a rare mycohete-rotrophic plant, may be determined by the abundance of its mycobionts. Mycorrhiza, 2016, 26: 417-427 [11] 申仕康, 王杨, 王跃华. 非灭菌条件下丛枝菌根对猪血木幼苗生长的影响. 科技导报, 2009, 27(16): 19-25 [12] 王晓燕, 彭礼琼, 金则新. 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响. 生态学报, 2016, 36(16): 5204-5214 [13] Rigg JL, Offord CA, Singh BK, et al. Soil microbial communities influence seedling growth of a rare conifer independent of plant-soil feedback. Ecology, 2016, 97: 3346-3358 [14] 汤彦承, 李良千. 试论东亚被子植物区系的历史成分和第三纪源头——基于省沽科、刺参科和忍冬科植物地理的研究. 植物分类学报, 1996, 34(5): 453-478 [15] IUCN. IUCN Red List of Threatened Species[EB/OL]. (1998-01-01) [2021-08-02]. http://www.iucnredlist.org /species/32355/9700631 [16] Jin ZX, Li JM, Ding LY. Fine scale spatial genetic structure of the endangered Heptacodium miconioides endemic to China. Biochemical Systematics and Ecology, 2013, 48: 228-234 [17] 金则新, 李钧敏, 边才苗, 等. 七子花保护生物学. 北京: 科学出版社, 2009 [18] 李钧敏, 金则新. 浙江省境内七子花天然种群遗传多样性研究. 应用生态学报, 2005, 16(3): 795-800 [19] Jin ZX, Li JM. Genetic differentiation in endangered Heptacodium miconioides Rehd. based on ISSR polymorphism and implications for its conservation. Forest Eco-logy and Management, 2007, 245: 130-136 [20] Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-161 [21] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 第4版. 北京: 高等教育出版社, 2009 [22] 张亚敏, 马克明, 李芳兰, 等. 干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究. 生态学报, 2016, 36(11): 3329-3337 [23] Stevens KJ, Wall CB, Janssen JA. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza, 2011, 21: 279-288 [24] Birhane E, Sterck FJ, Bongers F, et al. Arbuscular mycorrhizal impacts on competitive interactions between Acacia etbaica and Boswellia papyrifera seedlings under drought stress. Journal of Plant Ecology, 2013, 7: 298-308 [25] Zhao RX, Guo W, Bi N, et al. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology, 2015, 88: 41-49 [26] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32(2): 513-520 [27] Atkin OK, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 2009, 103: 581-597 [28] 李亚楠, 张淞著, 张藤子, 等. 干旱-高钙对麻栎幼苗非结构性碳水化合物含量和分配的影响. 生态学报, 2020, 40(7): 2266-2284 [29] 张中峰, 张金池, 黄玉清, 等. 接种菌根真菌对青冈栎幼苗耐旱性的影响. 生态学报, 2016, 36(11): 3402-3410 [30] Wu QS, Srivastava AK, Zou YN. AMF-induced tole-rance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87 [31] Ventura M, Liboriussen L, Lauridsen T, et al. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshwater Biology, 2008, 53: 1434-1452 [32] 王凯, 沈潮, 孙冰, 等. 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 2018, 29(7): 2286-2294 [33] Yan ZB, Guan HY, Han WX, et al. Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana. Annals of Botany, 2016, 117: 431-439 [34] 王如岩, 于水强, 张金池, 等. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响. 南京林业大学学报: 自然科学版, 2012, 36(6): 23-27 [35] Hidri R, Mahmoud OM, Debez A, et al. Modulation of C:N:P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances. Applied Soil Eco-logy, 2019, 143: 161-172 |