[1] 于占辉, 陈云明, 杜盛. 黄土高原半干旱区人工林刺槐展叶期树干液流动态分析. 林业科学, 2009, 45(4): 7 [2] 张琨, 吕一河, 傅伯杰. 黄土高原典型区植被恢复及其对生态系统服务的影响. 生态与农村环境学报, 2017, 33(1): 23-31 [3] 王力, 邵明安, 李裕元. 陕北黄土高原人工刺槐林生长与土壤干化的关系研究. 林业科学, 2004, 40(1): 84-91 [4] 李军, 王学春, 邵明安, 等. 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 2010, 34(3): 330-339 [5] Li Q, Zhao MM, Wang N, et al. Water use strategies and drought intensity define the relative contributionsof hydraulic failure and carbohydrate depletion during seedling mortality. Plant Physiology and Biochemistry, 2020, 153: 106-118 [6] Wheeler JK, Sperry JS, Hacke UG, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 2005, 28: 800-812 [7] Chen Z , Zhu SD , Zhang Y, et al. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 2020, 40: 1029-1042 [8] Choat B, Cobb AR, Jansen S. Structure and function of bordered pits: New discoveries and impacts on whole-plant hydraulic function. New Phytologist, 2008, 177: 608-625 [9] Kaack L, Weber M, Isasa E, et al. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. New Phytologist 2021, 230: 1829-1843 [10] 程琳, 覃晓颖, 黄开勇, 等. 杉木不同种质和林龄的木材管胞形态变异规律. 广西林业科学, 2017, 46(1): 47-52 [11] 谭春霞, 刘广芳, 王梦瑶, 等. 黄河三角洲不同林龄刺槐细根形态的时空动态. 东北林业大学学报, 2023, 51(7): 51-60 [12] 李俊辉, 李秧秧, 赵丽敏, 等. 立地条件和树龄对刺槐和小叶杨叶水力性状及抗旱性的影响. 应用生态学报, 2012, 23(9): 2397-2403 [13] Klimesova J, Martinkova J, Pausas JG, et al. Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics 2019, 40: 125485 [14] Trifilo P, Casolo V, Raimondo F, et al. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L: The possible link between carbon starvation and hydraulic failure. Plant Physiology and Biochemistry, 2017, 120: 232-241 [15] Pagliarani C, Casolo V, Beiragi MA, et al. Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. Plant, Cell and Environment, 2019, 42: 1775-1787 [16] Millard P, Sommerkorn M, Grelet GA. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 2007, 175: 11-28 [17] 秦晶, 杜建会, 张琪, 等. 平潭岛海岸三种典型沙生植物非结构性碳水化合物含量特征研究. 广西植物 2020, 40(3): 395-402 [18] 李菊艳. 不同林龄胡杨组织非结构性碳水化合物含量变化规律. 干旱区资源与环境, 2021, 35(9): 185-192 [19] 王凯, 宋琪, 张日升, 等. 科尔沁沙地防护林主要树种的非结构性碳水化合物分布特征. 林业科学, 2020, 56(12): 39-48 [20] 韦景树, 李宗善, 焦磊, 等. 黄土高原羊圈沟小流域人工物种和自然物种径向生长对气候变化的响应差异. 生态学报, 2018, 38(22): 8040-8050 [21] Yin PX, Meng F, Liu Q, et al.A comparison of two centrifuge techniques for constructing vulnerability curves: Insight into the ‘open-vessel’ artifact. Physiologia Plantarum, 2019, 165: 701-710 [22] Liu Q, Liu Y, Gao LQ, et al. Vessel, intervessel pits and vessel-to-fiber pits have significant impact on hydraulic function under different drought conditions and re-irrigation. Environmental and Experimental Botany, 2023, 214: 105476 [23] Levionnois S, Kaack L, Heuret P. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. Plant Physiology, 2022, 190: 371-386 [24] Gleason SM, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 2016, 209: 123-136 [25] Jansen S, Baas P, Gasson P, et al. Variation in xylem structure from tropics to tundra: Evidence from vestured pits. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 8833-8837 [26] 牛存洋, 寿文凯, 杨喜田, 等. 太行山区栓皮栎、刺槐和侧柏对干旱的适应策略研究. 林业科学研究, 2022, 35(6): 73-82 [27] Levionnois S, Jansen S, Wandji RT, et al. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytologist, 2021, 229: 1453-1466 [28] Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees: From what we can measure to what we want to know. New Phytologist, 2016, 211: 386-403 [29] Tomasella M, Petrussa E, Petruzzellis F, et al. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 2020, 21: 144 [30] Kannenberg SA, Phillips RP. Non-structural carbohydrate pools not linked to hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent recovery. Tree Physiology, 2020, 40: 259-271 |