[1] Yu GR, Chen Z, Piao SL, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4910-4915 [2] Wang JQ, Shi XZ, Lucas-Borja ME, et al. Plants, soil properties and microbes directly and positively drive ecosystem multifunctionality in a plantation chronosequence. Land Degradation & Development, 2022, 33: 3049-3057 [3] Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590 [4] Lucas-Borja ME, Hedo J, Cerdá A, et al. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) forest. Science of the Total Environment, 2016, 562: 145-154 [5] Baldrian P, Lopez-Mondejar R, Kohout P. Forest microbiome and global change. Nature Reviews Microbiology, 2023, 21: 487-501 [6] Li FQ, Zi HY, Sonne C, et al. Microbiome sustains forest ecosystem functions across hierarchical scales. Eco-Environment & Health, 2023, 2: 24-31 [7] Williamson KE, Fuhrmann JJ, Wommack KE, et al. Viruses in soil ecosystems: An unknown quantity within an unexplored territory. Annual Review of Virology, 2017, 4: 201-219 [8] Zhou GX, Chen L, Zhang CZ, et al. Bacteria-virus interactions are more crucial in soil organic carbon storage than iron protection in biochar-amended paddy soils. Environmental Science & Technology, 2023, 57: 19713-19722 [9] Trubl G, Roux S, Solonenko N, et al. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ, 2019, 7: e7265 [10] Jover LF, Effler TC, Buchan A, et al. The elemental composition of virus particles: Implications for marine biogeochemical cycles. Nature Reviews Microbiology, 2014, 12: 519-528 [11] Li C, Ni BC, Wang XL, et al. Effect of forest soil viruses on bacterial community succession and the implication for soil carbon sequestration. Science of the Total Environment, 2023, 892: 164800 [12] Emerson JB. Soil viruses: A new hope. mSystems, 2019, 4: e00120-19 [13] Li YT, Sun H, Yang WC, et al. Dynamics of bacterial and viral communities in paddy soil with irrigation and urea application. Viruses, 2019, 11: 347 [14] 陈莫莲, 安新丽, 杨凯, 等. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展. 应用生态学报, 2021, 32(6): 2267-2274 [15] Bi L, Yu DT, Han LL, et al. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. Science of the Total Environment, 2022, 812: 152217 [16] Han LL, Yu DT, Zhang LM, et al. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils. Scientific Reports, 2017, 7: 45142 [17] Gnankambary Z, Ilstedt U, Nyberg G, et al. Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: Effects of tree canopy and fertilization. Soil Biology and Biochemistry, 2008, 40: 350-359 [18] 王梦娟, 黄志群, 张冰冰, 等. 不同林龄杉木人工林土壤硝化和反硝化作用. 应用生态学报, 2023, 34(1): 18-24 [19] 林秋沙, 严雨亭, 袁程昱, 等. 不同更新方式下亚热带森林土壤病毒群落结构与功能特征. 福建师范大学学报: 自然科学版, 2024, 40(1): 60-68 [20] 肖劲洲, 孙国伟, 王洪明, 等. 海洋病毒荧光显微计数法的优化与应用. 微生物学通报, 2014, 41(4): 776-785 [21] 毕丽, 杜帅, 于丹婷, 等. 新疆两种土地利用方式下土壤病毒的群落组成与功能特征. 生态学报, 2021, 41(7): 2728-2737 [22] 李琳, 向丹, 武亚芬, 等. 长期不同施肥方式对日光温室番茄土壤养分和微生物群落结构的影响. 应用生态学报, 2022, 33(2): 415-422 [23] Keller DP, Hood RR. Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecological Modelling, 2011, 222: 1139-1162 [24] Zhang J, Xu M, Zou X, et al. Structural and functional characteristics of soil microbial community in a Pinus massoniana forest at different elevations. PeerJ, 2022, 10: e13504 [25] Bi L, Yu DT, Du S, et al. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils. Environmental Microbiology, 2021, 23: 588-599 [26] Brown JD, Swayne DE, Cooper RJ, et al. Persistence of H5 and H7 avian influenza viruses in water. Avian Diseases, 2007, 51: 285-289 [27] Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 2004, 28: 127-181 [28] 李小容, 韦金玉, 陈云, 等. 海南岛不同林龄的木麻黄林地土壤微生物的功能多样性. 植物生态学报, 2014, 38(6): 608-618 [29] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略. 生态学报, 2016, 36(9): 2620-2625 [30] Ahlgren NA, Fuchsman CA, Rocap G, et al. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. The ISME Journal, 2019, 13: 618-631 [31] Zayed O, Hewedy OA, Abdelmoteleb A, et al. Nitrogen journey in plants: From uptake to metabolism, stress Response, and microbe interaction. Biomolecules, 2023, 13: 1443 [32] 姜学霞, 焦念志. 海洋异养细菌硝酸盐同化研究进展. 中国科学:地球科学, 2016, 46(2): 199-206 [33] 洪宣生, 王宗星, 徐清福, 等. 杉木+闽楠复层林土壤氮磷组分及微生物性状随林龄变化特征. 应用生态学报, 2024, 35(3): 622-630 [34] Muda M, Rao NN, Torriani A. Role of phoU in phosphate transport and alkaline phosphatase regulation. Journal of Bacteriology, 1992, 174: 8057-8064 [35] Yu H, Xiong LL, Li YM, et al. Genetic diversity of virus auxiliary metabolism genes associated with phosphorus metabolism in Napahai plateau wetland. Scientific Reports, 2023, 13: 3250 [36] Wang L, Zhao JL, Wang ZM, et al. phoH-carrying virus communities responded to multiple factors and their correlation network with prokaryotes in sediments along Bohai Sea, Yellow Sea, and East China Sea in China. Science of the Total Environment, 2022, 812: 152477 [37] 王淑真, 梁晶晶, 包明琢, 等. 不同林龄杉木林土壤磷形态与解磷菌变化. 林业科学, 2022, 58(2): 58-69 |