[1] Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68: 4-9 [2] Zheng H, Wang X, Wu J, et al. Long-term impacts of extensive terracing on soil aggregates and associated C-N-P in the Camellia oleifera orchard of southern China. Catena, 2023, 233: 107512 [3] Li WQ, Liu YJ, Zheng H, et al. Complex vegetation patterns improve soil nutrients and maintain stoichiometric balance of terrace wall aggregates over long periods of vegetation recovery. Catena, 2023, 227: 107141 [4] 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展. 林业科学, 2018, 54(7): 130-136 [5] 葛晓改, 周本智, 肖文发. 马尾松人工林凋落物产量、养分含量及养分归还量特性. 长江流域资源与环境, 2014, 23(7): 996-1003 [6] 胡尔查, 王铮, 李梓豪, 等. 毛乌素沙地不同林龄樟子松人工林林下植物多样性和生物量的动态变化[EB/OL]. (2024-02-08) [2024-04-13].生态学杂志. https://link.cnki.net/urlid/21.1148.Q.20240205.1812.010 [7] 张晓曦, 胡嘉伟, 刘凯旋, 等. 黄土丘陵区刺槐人工林林龄增加过程中土壤微环境变化对凋落物分解的影响. 生态学报, 2024, 44(7): 2931-2945 [8] 廖周瑜, 惠阳, 王邵军, 等. 不同林龄云南松凋落叶分解及养分归还特征. 生态环境学报, 2018, 27(11): 1981-1986 [9] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273 [10] 杨阳, 王宝荣, 窦艳星, 等. 植物源和微生物源土壤有机碳转化与稳定研究进展. 应用生态学报, 2024, 35(1): 111-123 [11] 李林芝, 马源, 张小燕, 等. 不同退化程度高寒草甸土壤团聚体及其有机碳分布特征. 草地学报, 2023, 31(1): 210-219 [12] 孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系. 生态学报, 2016, 36(21): 6879-6888 [13] 刘娜, 杨光能, 周华, 等. 黔中不同发育阶段马尾松人工林土壤团聚体及碳氮含量特征. 中南林业科技大学学报, 2024, 44(6): 145-155 [14] 区晓琳, 陈志彪, 陈志强, 等. 亚热带侵蚀红壤区植被恢复过程中土壤团聚体化学计量特征. 土壤学报, 2018, 55(5): 1156-1167 [15] 刘宣, 崔宁洁, 谭飞川, 等. 华西雨屏区柳杉人工林土壤持水能力及其对土壤有机碳的指示作用. 应用与环境生物学报, 2023, 29(3): 670-679 [16] Zanella A, Ponge JF, Briones MJI, et al. Terrestrial humus systems and forms: Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology, 2018, 122: 103-137 [17] Wu HL, Xiang WH, Ouyang S, et al. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. Forest Ecology and Management, 2020, 460: 117896 [18] 胡一帆, 刘宣, 李宇, 等. 华西雨屏区不同林龄柳杉人工林土壤磷组分特征. 生态学报, 2024, 44(2): 686-698 [19] Shen Y, Xiong SC, You CM, et al. Soil microbial biomass and community composition across a chronosequence of Chinese cedar plantations. Forests, 2023, 14: 470 [20] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643 [21] 吴梦瑶, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化. 应用生态学报, 2021, 32(4): 1241-1249 [22] Bucka FB, Klbl A, Uteau D, et al. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma, 2019, 354: 113881 [23] 童晨晖, 王辉, 谭帅, 等. 亚热带丘岗区经果林种植对红壤团聚体稳定性的影响. 应用生态学报, 2022, 33(4): 1012-1020 [24] 白晓雄, 李妍, 胡斯乐, 等. 林龄对刺槐人工林土壤团聚体、有机碳和细菌群落的影响. 生态学报, 2024, 44(12): 5259-5268 [25] 李宗勋, 李启艳, 侯晓龙, 等. 不同自然降雨等级下不同郁闭度马尾松林的水土流失特征. 水土保持学报, 2020, 34(1): 27-33 [26] 杨振安, 宋双飞, 李靖, 等. 不同林龄华北落叶松人工林根系特征和氮磷养分研究. 西北植物学报, 2014, 34(7): 1432-1442 [27] 韩畅, 宋敏, 杜虎, 等. 广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征. 生态学报, 2017, 37(7): 2282-2289 [28] 涂宏涛, 万杰, 孙玉军, 等. 不同林龄杉木人工林根生物量及其相容性模型. 南京林业大学学报: 自然科学版, 2015, 39(6): 81-86 [29] 李婧, 洪宗文, 熊仕臣, 等. 华西雨屏区不同林龄柳杉人工林的根系形态和碳氮磷化学计量特征. 四川农业大学学报, 2023, 41(2): 257-265 [30] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [31] 张喆, 黄永珍, 张超, 等. 不同林龄杉木人工林土壤团聚体磷素分布特征. 应用生态学报, 2022, 33(4): 939-948 [32] Segoli M, De Gryze S, Dou F, et al. AggModel: A soil organic matter model with measurable pools for use in incubation studies. Ecological Modelling, 2013, 263: 1-9 [33] 吴梦瑶, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化. 应用生态学报, 2021, 32(4): 1241-1249 [34] Kurmi B, Nath AJ, Lal R, et al. Water stable aggregates and the associated active and recalcitrant carbon in soil under rubber plantation. Science of the Total Environment, 2020, 703: 135498 [35] Wang CQ, Xue L, Jiao RZ. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations. Forest Ecology and Management, 2021, 482: 118887 [36] 王富华, 吕盛, 黄容, 等. 缙云山4种森林植被土壤团聚体有机碳分布特征. 环境科学, 2019, 40(3): 1504-1511 [37] Mujuru L, Gotora T, Velthorst EJ, et al. Soil carbon and nitrogen sequestration over an age sequence of Pinus patula plantations in Zimbabwean Eastern Highlands. Forest Ecology and Management, 2014, 313: 254-265 [38] Liu X, Li LH, Wang Q, et al. Land-use change affects stocks and stoichiometric ratios of soil carbon, nitrogen, and phosphorus in a typical agropastoral region of northwest China. Journal of Soils and Sediments, 2018, 18: 3167-3176 [39] Tian HQ, Chen GS, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139-151 [40] 陈培云, 范弢, 何停, 等. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报, 2022, 28(6): 1549-1556 [41] 李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16 [42] Tang LL, Wang SQ. Dynamics of soil aggregate-related C-N-P stoichiometric characteristics with stand age and soil depth in Chinese fir plantations. Land Degradation & Development, 2022, 33: 1290-1306 [43] 张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C:N:P化学计量特征及其与土壤理化性质的关系. 生态学报, 2019, 39(7): 2520-2531 [44] 杨宬君, 张鑫, 马孟平, 等. 华西雨屏区不同林龄柳杉人工林表层土壤磷组分特征. 生态学杂志, 2024, 43(3): 623-632 |