[1] Tudi M, Ruan HD, Wang L, et al. Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 2021, 18: 1112 [2] Dudley N, Attwood SJ, Goulson D, et al. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biological Conservation, 2017, 209: 449-453 [3] Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 2016, 4: 148 [4] Rahman SFSA, Singh E, Pieterse CMJ, et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 2018, 267: 102-111 [5] Walsh UF, Morrissey JP, Gara FO. Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Current Opinion in Biotechnology, 2001, 12: 289-295 [6] 吴思炫, 高复云, 张锐澎, 等. 番茄青枯病生物防治的研究进展. 应用生态学报, 2023, 34(9): 2585-2592 [7] Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 2020, 65: 168-178 [8] 李晓芳, 田叶韩, 彭海莹, 等. 防治苦瓜枯萎病的拮抗放线菌分离筛选及鉴定. 应用生态学报, 2020, 31(11): 3869-3879 [9] 周晓梅, 刘强, 王瑛璐. 拮抗菌生物防治农作物病害的研究进展. 吉林师范大学学报: 自然科学版, 2010, 31(4): 36-39 [10] 苏代发, 代庆忠, 严聪文, 等. 草莓根腐病及其生物防治研究进展. 江苏农业科学, 2022, 50(24): 16-26 [11] 沈海斌, 王前程, 陈捷, 等. 三株木霉对番茄枯萎病的防治效果和机理研究. 植物生理学报, 2023, 59(5): 965-976 [12] 陶新, 夏世斌, 刘秋梅, 等. 甘蔗黑穗病的微生物防治研究进展. 应用生态学报, 2023, 34(3): 846-852 [13] Dhawan K, Dhawan S, Sharma A. Passiflora: A review update. Journal of Ethnopharmacology, 2004, 94: 1-23 [14] 宋晓兵, 崔一平, 彭埃天, 等. 广东西番莲茎基腐病病原的分离及鉴定. 南方农业学报, 2019, 50(5): 1007-1012 [15] Hao CH, Chai X, Wu FC, et al. First report of collar rot in purple passion fruit (Passiflora edulis) caused by Neocosmospora solani in Yunnan Province, China. Plant Disease, 2021, 105: 3750 [16] Chen YH, Lee PC, Huang TP, et al. Biological control of collar rot on passion fruits via induction of apoptosis in the collar rot pathogen by Bacillus subtilis. Phytopathology, 2021, 111: 627-638 [17] Wang C, Ye X, Ng TB, et al. Study on the biocontrol potential of antifungal peptides produced by Bacillus velezensis against Fusarium solanithat infects the passion fruit Passiflora edulis. Journal of Agricultural and Food Chemistry, 2021, 69: 2051-2061 [18] Fang X, You MP, Barbetti MJ, et al. Reduced severity and impact of Fusarium wilt on strawberry by manipulation of soil pH, soil organic amendments and crop rotation. European Journal of Plant Pathology, 2012, 134: 619-629 [19] Niwa R, Kumei T, Nomura Y, et al. Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers. Soil Biology and Biochemistry, 2007, 39: 778-785 [20] Segura RA, Stoorvogel JJ, Sandoval JA, et al. The effect of soil properties on the relation between soil management and Fusarium wilt expression in Gros Michel bananas. Plant and Soil, 2022, 471: 89-100 [21] Deng W, Gong J, Peng W, et al. Alleviating soil acidification to suppress Panax notoginseng soil-borne disease by modifying soil properties and the microbiome. Plant and Soil, 2024, DOI: 10.1007/s11104-024-06577-y [22] Liu L, Chen Z, Su Z, et al. Soil pH indirectly determines Ralstonia solanacearum colonization through its impacts on microbial networks and specific microbial groups. Plant and Soil, 2023, 482: 73-88 [23] Watanabe K, Matsui M, Honjo H, et al. Effects of soil pH on rhizoctonia damping-off of sugar beet and disease suppression induced by soil amendment with crop residues. Plant and Soil, 2011, 347: 255-268 [24] Xie L, Timonen S, Gange AC, et al. Effect of weather conditions, substrate pH, biochar amendment and plant species on two plant growth-promoting microbes on vegetated roofs and facades. Heliyon, 2022, 8: e09560 [25] 梁松, 魏甜甜, 张静蕾, 等. 辣椒枯萎病生防木霉菌T21的分离鉴定及其生物学特性研究. 天津农业科学, 2022, 28(5): 59-66 [26] 杜莉芳, 曾晴, 徐晶, 等. 哈密瓜镰刀果腐菌的鉴定、生物学特性和室内防治药剂的筛选. 果树学报, 2022, 39(5): 855-869 [27] Li H, Ma Y, Liu W, et al. Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China. Environmental Management, 2012, 50: 837-848 [28] 包文杰. 西番莲茎基腐病病原菌对根际细菌群落的影响及生物防治初探. 硕士论文. 北京: 中国科学院大学, 2023 [29] 张丽荣, 李鹏, 康萍芝, 等. 压砂西瓜枯萎病生防木霉菌筛选及其拮抗机制研究. 河南农业科学, 2018, 47(5): 75-78 [30] Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, et al. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiological Research, 2024, 281: 127621 [31] Li M, Yu R, Bai X, et al. Fusarium: A treasure trove of bioactive secondary metabolites. Natural Product Reports, 2020, 37: 1568-1588 [32] 王伟东, 高亚梅, 韩毅强, 等. 哈茨木霉对几种病原菌的拮抗作用及液体产孢培养条件的研究. 黑龙江八一农垦大学学报, 2010, 22(6): 4-8 [33] 姚彦坡, 吕国忠, 张淑金, 等. 草坪镰刀枯萎病菌拮抗木霉菌的筛选及拮抗机制的研究. 中国草地学报, 2006, 28(6): 56-60 [34] 韩长志. 植物病原拮抗菌木霉属真菌的研究进展. 江苏农业学报, 2016, 32(4): 946-952 [35] Benítez T, Rincón AM, Limón MC, et al. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 2004, 7: 249-260 [36] Card SD, Walter M, Jaspers MV, et al. Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australasian Plant Pathology, 2009, 38: 183 [37] 扈进冬, 刘敏敏, 安淑辉, 等. 木霉菌剂对植物病害防治效果及其影响因素的Meta分析. 安徽农业科学, 2022, 50(10): 212-216 [38] 孟素玲. 西瓜枯萎病菌与生防木霉根部定殖动态差异及其对土壤酸碱度和盐浓度的响应. 硕士论文. 银川: 宁夏大学, 2023 |