欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2599-2608.doi: 10.13287/j.1001-9332.202409.016

• 研究报告 • 上一篇    下一篇

铁输入对泥炭土甲烷生成的影响及其驱动机理

胡馨艺1, 王红岩1,2*, 湛甜3, 徐祎婕1, 孙国新2, 于志国1   

  1. 1南京信息工程大学水文与水资源学院, 南京 210044;
    2中国科学院生态环境研究中心, 北京 100085;
    3武汉区域气候中心, 武汉 430074
  • 收稿日期:2024-03-26 接受日期:2024-07-29 出版日期:2024-09-18 发布日期:2025-03-18
  • 通讯作者: * E-mail: why_cugb@163.com
  • 作者简介:胡馨艺, 女, 2000年生, 硕士研究生。主要从事湿地碳排放研究。E-mail: 202212600010@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目(42207268,41877337)和江苏省自然基金项目(SBK2022044914)

Influences and mechanisms of iron input for methane productions in peatlands

HU Xinyi1, WANG Hong-yan1,2*, ZHAN Tian3, XU Yijie1, SUN Guoxin2, YU Zhiguo1   

  1. 1School of Hydrology and Water Resource, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    3Wuhan Regional Climate Center, Wuhan 430074, China
  • Received:2024-03-26 Accepted:2024-07-29 Online:2024-09-18 Published:2025-03-18

摘要: 大气沉降是泥炭地中铁的重要来源,然而铁沉降对泥炭地中甲烷(CH4)生成的影响及其机理尚不清楚。本研究以青藏高原泥炭土为研究对象,采用室内微宇宙培养实验,通过57Fe-穆斯保尔谱、三维荧光光谱等地球化学分析手段结合16S rRNA高通量测序、实时荧光定量PCR(qPCR)等分析方法,探究了水铁矿添加对泥炭地CH4生成的影响及其微生物驱动机理。结果表明: 水铁矿添加显著提高了泥炭土中CH4的生成速率,水铁矿添加组CH4的生成速率约为对照组的30倍。铁氧化物的选择性提取及57Fe-穆斯保尔谱表征表明,水铁矿还原过程中并无结晶型二次铁氧化物生成。水铁矿的添加增加了泥炭土可溶性有机质(DOM)的降解,可溶性有机碳(DOC)浓度随之降低;泥炭土中典型发酵微生物包括酸杆菌门和拟杆菌门的丰度显著增加,表明水铁矿的添加加快了有机质的分解,增加了产甲烷菌代谢所需的底物浓度。此外,地杆菌属、地发菌属和甲烷杆菌属丰度在水铁矿添加组协同增加,表明它们之间的互营作用潜在促进了CH4的生成。综上,大气沉降导致的铁输入可显著促进泥炭土中CH4的生成,本研究结果对气候变化背景下调控泥炭地CH4排放具有重要意义。

关键词: 泥炭土壤, 水铁矿, 甲烷, 有机碳, 微生物

Abstract: Atmospheric deposition provides a stable iron source for peatlands. The influences of Fe input on methane (CH4) productions and the underlying mechanisms remain unclear. We conducted a microcosm experiment with peat sediments collected from the Qinghai-Tibet Plateau of China to explore the effects of ferrihydrite reductionfor CH4 productions in peatlands by using geochemical analyses including 57Fe Mössbauer spectroscopy and three-dimensional fluorescence spectroscopy (3D-EEM) in combination with high-throughput sequencing of 16S rRNA and real-time fluorescence quantitative PCR (qPCR). Results showed that ferrihydrite reduction significantly increased CH4 production, being 30 times of that under the control. Selective extractions for iron oxides and 57Fe Mössbauer spectroscopy measurements revealed that no crystalline secondary iron minerals were formed during the ferrihydrite reduction process. The addition of ferrihydrite enhanced the degradation of dissolved organic matter (DOM) in peat soil, resulting in a reduction in the concentration of dissolved organic carbon (DOC). Furthermore, the relative abundance of typical fermentative microorganisms in peat sediments, including Acidobacteriota and Bacteroidota, significantly increased. Such a result indicated that reduction of ferrihydrite accelerated organic matter decomposition and increased substrate concentration required for methanogenesis. Furthermore, a co-increase in relative abundance of Geobacter, Geothrix, and Methanobacterium in the ferrihydrite-amended group suggested a potential synergistic interaction that may promote the CH4 production. Our results demonstrated that ferrihydrite reduction could significantly enhance CH4 production and play a vital role in regulating CH4 emissions in peatlands.

Key words: peat soil, ferrihydrite, methane, organic carbon, microorganism