应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2413-2422.doi: 10.13287/j.1001-9332.202409.013
安韶山1,2*, 胡洋2,3, 王宝荣4
收稿日期:
2024-04-01
接受日期:
2024-07-21
出版日期:
2024-09-18
发布日期:
2025-03-18
通讯作者:
* E-mail: shan@ms.iswc.ac.cn
作者简介:
安韶山, 男, 1972年生, 博士, 研究员。主要从事植被恢复与土壤相互作用机制研究. E-mail: shan@ms.iswc.ac.cn
基金资助:
AN Shaoshan1,2*, HU Yang2,3, WANG Baorong4
Received:
2024-04-01
Accepted:
2024-07-21
Online:
2024-09-18
Published:
2025-03-18
摘要: 黄土高原土层深厚,蕴藏着大量的有机碳,近年来黄土高原开展的一系列生态恢复工程改变了土壤有机碳的稳定性。土壤有机碳稳定性决定了土壤固定和储存有机碳的能力,然而,目前尚未系统综述黄土高原植被恢复过程中土壤有机碳稳定性变化特征及其相关机制。鉴于此,本文概括了黄土高原植被恢复过程中土壤有机碳稳定性的变化规律,梳理了土壤有机碳的稳定机制,主要包括矿物保护作用、物理保护作用和生物机制,并对黄土高原植被恢复过程中土壤有机碳稳定性研究未来的发展方向和研究重点进行了展望,以期为黄土高原植被恢复过程中土壤固碳、稳碳理论与技术提供科学支撑,为“双碳”目标的实现提供科学参考。
安韶山, 胡洋, 王宝荣. 黄土高原植被恢复中土壤有机碳稳定机制研究进展[J]. 应用生态学报, 2024, 35(9): 2413-2422.
AN Shaoshan, HU Yang, WANG Baorong. Research advance on soil organic carbon stabilization mechanisms during vegetation restoration on the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2413-2422.
[1] Falkowski P, Scholes RJ, Boyle EEA, et al. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290: 291-296 [2] Bradford MA, Wieder WR, Bonan GB, et al. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 2016, 6: 751-758 [3] 方精云. 碳中和的生态学透视. 植物生态学报, 2021, 45(11): 1173-1176 [4] Deng L, Wang GL, Liu GB, et al. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecological Engineering, 2016, 90: 105-112 [5] 赵广举, 穆兴民, 田鹏, 等. 黄土高原植被变化与恢复潜力预测. 水土保持学报, 2021, 35(1): 205-212 [6] Wang YF, Fu BJ, Lyu YH, et al. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena, 2011, 85: 58-66 [7] Schmidt MWI, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 [8] Jha P, Lakaria BL, Biswas AK, et al. Effects of carbon input on soil carbon stability and nitrogen dynamics. Agriculture, Ecosystems and Environment, 2014, 189: 36-42 [9] Xiao KQ, Liang C, Wang ZM, et al. Beyond microbial carbon use efficiency. National Science Review, 2024, 11: nwae059 [10] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [11] Xiao KQ, Zhao Y, Liang C, et al. Introducing the soil mineral carbon pump. Nature Reviews Earth and Environment, 2023, 4: 135-136 [12] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544 [13] 杨阳, 刘良旭, 童永平, 等. 黄土高原植被恢复过程中土壤碳储量及影响因素研究进展. 地球环境学报, 2023, 14(6): 649-662 [14] Feng XM, Fu BJ, Piao SL, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6: 1019-1022 [15] Feng XJ, Simpson MJ. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Organic Geochemistry, 2007, 38: 1558-1570 [16] Huang XY, Liu XW, Liu JL, et al. Iron-bound organic carbon and their determinants in peatlands of China. Geoderma, 2021, 391: 114974 [17] Wang QK, Wang SL, Zhong MC. Ecosystem carbon storage and soil organic carbon stability in pure and mixed stands of Cunninghamia lanceolata and Michelia macclurei. Plant and Soil, 2013, 370: 295-304 [18] Yuan X, Qin WK, Xu H, et al. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biology and Biochemistry, 2020, 150: 107984 [19] Cheng M, An SS. Responses of soil nitrogen, phospho-rous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 2015, 7: 216-223 [20] Plante AF, Conant RT, Paul EA, et al. Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. European Journal of Soil Science, 2006, 57: 456-467 [21] Chan KY, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, 2001, 166: 61-67 [22] 张欣怡. 刺槐林恢复中土壤碳库组分及稳定性对有机碳激发效应的响应. 硕士论文. 杨凌: 西北农林科技大学, 2021 [23] Shi JW, Song MY, Yang L. Recalcitrant organic carbon plays a key role in soil carbon sequestration along a long-term vegetation succession on the Loess Plateau. Catena, 2023, 233: 107528 [24] Ghani MI, Wang J, Li P. Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China. International Soil and Water Conservation Research, 2023, 11: 561-571 [25] Baldock JA, Masiello CA, Gelinas Y, et al. Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry, 2004, 92: 39-64 [26] Chen WX, Gao QQ, Hu HY, et al. Microbial control of soil DOM transformation during the vegetation restoration in the Loess Plateau. Plant and Soil, 2024, DOI: 10.1007/s11104-024-06627-5 [27] 刘颖异, 刘涵宇, 张琦, 等. 黄土高原次生林演替对团聚体有机碳含量及化学稳定性的影响. 生态学报, 2024, 44(5): 1940-1950 [28] 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展. 土壤学报, 2019, 56(4): 796-812 [29] Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 2002, 34: 139-162 [30] Su ZX, Zhong YQW, Zhu XY, et al. Vegetation restoration altered the soil organic carbon composition and favoured its stability in a Robinia pseudoacacia plantation. Science of the Total Environment, 2023, 899: 165665 [31] Wang AN, Zha TG, Zhang ZQ. Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China. Catena, 2023, 228: 107142 [32] Song XS, Guo JW, Wang X, et al. Afforestation alters the molecular composition of soil organic matter in the central Loess Plateau of China. Forests, 2023, 14: 1502 [33] 杨娥女. 黄土高原不同生态系统土壤有机碳特征和稳定性研究. 硕士论文. 杨凌: 西北农林科技大学, 2022 [34] Dou YX, Liao JJ, An SS. Importance of soil labile organic carbon fractions in shaping microbial community after vegetation restoration. Catena, 2023, 220: 106707 [35] Xu HW, Qu Q, Chen YH, et al. Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China. Catena, 2021, 196: 104812 [36] Tian Q, Yang F, Wang ZH, et al. Variation of soil organic carbon components and enzyme activities during the ecological restoration in a temperate forest. Ecological Engineering, 2024, 201: 107192 [37] 乔磊磊, 李袁泽, 翟珈莹, 等. 黄土丘陵区植被恢复模式对土壤碳组分的影响. 水土保持研究, 2019, 26(5): 14-20 [38] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 2022, 44(10): 11-22 [39] 张顺涛, 任涛, 周橡棋, 等. 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2022, 59(1): 194-205 [40] Witzgall K, Vidal A, Schubert DI, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12: 4115 [41] Deng L, Wang KB, Tang ZS, et al. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ13C). Agriculture, Ecosystems and Environment, 2016, 221: 235-244 [42] 张钦弟, 刘剑荣, 杨磊, 等. 半干旱黄土区植被恢复对土壤团聚体稳定性及抗侵蚀能力的影响. 生态学报, 2022, 42(22): 9057-9068 [43] 潘英杰, 何志瑞, 刘玉林, 等. 黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化. 生态学报, 2021, 41(13): 5195-5203 [44] Wang B, Xu GC, Ma TT, et al. Effects of vegetation restoration on soil aggregates, organic carbon, and nitrogen in the Loess Plateau of China. Catena, 2023, 231: 107340 [45] 苏静. 宁南地区植被恢复对土壤团聚体稳定性及碳库的影响. 硕士论文. 杨凌: 西北农林科技大学, 2005 [46] 刘文祥, 李勇, 于寒青, 等. 草灌植被恢复提高坡地土壤水稳性团聚体和碳、氮含量的有效性: 退耕年限的影响. 植物营养与肥料学报, 2016, 22(1): 164-170 [47] Zhong ZK, Han XH, Xu YD, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation and Development, 2019, 30: 1070-1082 [48] Deng L, Kim DG, Peng CH, et al. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degradation and Development, 2018, 29: 3974-3984 [49] Gunina A, Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry, 2014, 71: 95-104 [50] Shi JW, Deng L, Gunina A, et al. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from δ13C signatures. Soil Biology and Biochemistry, 2023, 180: 108988 [51] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [52] Zhu EX, Liu ZG, Ma LX, et al. Enhanced mineral preservation rather than microbial residue production dictates the accrual of mineral-associated organic carbon along a weathering gradient. Geophysical Research Letters, 2024, 51: e2024GL108466 [53] Liao JJ, Yang X, Dou YX, et al. Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland. Journal of Environmental Management, 2023, 344: 118536 [54] 张羽涵, 李瑶, 周玥, 等. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征. 应用生态学报, 2024, 35(3): 639-647 [55] 李玉婷, 张建军, 田宁宁, 等. 黄土高原半干旱区退耕还林对土壤微量元素的影响. 农业机械学报, 2015, 46(8): 113-120 [56] Liu FH, Zhu KC, Wang ZQ, et al. Production of reactive oxygen species and its role in mediating the abiotic transformation of organic carbon in sandy soil under vegetation restoration. Carbon Research, 2023, 2: 35 [57] Chen JW, Hu YL, Hall SJ, et al. Increased interactions between iron oxides and organic carbon under acid deposition drive large increases in soil organic carbon in a tropical forest in southern China. Biogeochemistry, 2022, 158: 287-301 [58] Xu ZB, Tsang DCW. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. Eco-Environment and Health, 2024, 3: 59-76 [59] Zhang KL, Maltais-Landry G, Liao HL. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 2021, 156: 108219 [60] Camenzind T, Mason-Jones K, Mansour I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 2023, 16: 115-122 [61] Yang Y, Liu H, Yang X, et al. Plant and soil elemental C:N:P ratios are linked to soil microbial diversity during grassland restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 806: 150557 [62] Sha GL, Chen YX, Wei TX, et al. Responses of soil microbial communities to vegetation restoration on the Loess Plateau of China: A meta-analysis. Applied Soil Ecology, 2023, 189: 104910 [63] Zhao FZ, Ren CJ, Han XH, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 2018, 427: 289-295 [64] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [65] Zhong ZK, Li WJ, Lu XQ, et al. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biology and Biochemistry, 2020, 151: 108048 [66] Song YH, Zhai JY, Zhang JY, et al. Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China. Science of the Total Environment, 2021, 766: 144209 [67] Yang Y, Dou YX, Wang BR, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170: 108688 [68] Liang M, Wu Y, Zhao QF, et al. Secondary vegetation succession on the Loess Plateau altered the interaction between arbuscular mycorrhizal fungi and nitrogen-fixing bacteria. Forest Ecology and Management, 2023, 530: 120744 [69] Cai XW, Zhang D, Wang YQ, et al. Shift in soil microbial communities along ~160 years of natural vegetation restoration on the Loess Plateau of China. Applied Soil Ecology, 2022, 173: 104394 [70] 秦泽峰, 谢沐希, 张运龙, 等. 丛枝菌根真菌介导的土壤有机碳稳定机制研究进展. 植物营养与肥料学报, 2023, 29(4): 756-766 [71] Steinberg PD, Rillig MC. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry, 2003, 35: 191-194 [72] Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 2004, 84: 355-363 [73] Qiao LL, Li YZ, Song YH, et al. Effects of vegetation restoration on the distribution of nutrients, glomalin-related soil protein, and enzyme activity in soil aggregates on the Loess Plateau, China. Forests, 2019, 10: 796 [74] Cheng L, Booker FL, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337: 1084-1087 [75] Barto EK, Alt F, OelmannY, et al. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology and Biochemistry, 2010, 42: 2316-2324 [76] Rillig MC, Mardatin NF, Leifheit EF, et al. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology and Biochemistry, 2010, 42: 1189-1191 [77] 孙利鹏. 子午岭天然辽东栎群落恢复影响土壤性质的过程和机制. 博士论文. 杨凌: 西北农林科技大学, 2018 [78] Liu HF, Wang XK, Liang CT, et al. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Pla-teau. Geoderma, 2020, 357: 113921 [79] Zhang L, Zhou JC, George TS, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 2022, 27: 402-411 [80] 杨析. 黄土高原草地土壤动物地理分布及其生态功能研究. 博士论文. 杨凌: 西北农林科技大学, 2023 [81] Li YP, Ma L, Wang J, et al. Soil faunal community composition alters nitrogen distribution in different land use types in the Loess Plateau, China. Applied Soil Ecology, 2021, 163: 103910 [82] Yang X, Shao MA, Li TC, et al. Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau. Ecological Indicators, 2021, 122: 107236 [83] Blouin M, Hodson M, Delgado EA, et al. A review of earthworm impact on soil function and ecosystem ser-vices. European Journal of Soil Science, 2013, 64: 161-182 [84] Li YP, Wang J, Shao MA. Assessment of earthworms as an indicator of soil degradation: A case-study on loess soils. Land Degradation and Development, 2021, 32: 2606-2617 [85] Wen SH, Wang J, Li YP, et al. Earthworms reduce nutrient loss from loess soil slopes under simulated rain. Geoderma, 2023, 438: 116654 [86] Li YP, Wang J, Shao MA. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. Journal of Environmental Management, 2021, 278: 111504 [87] 邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能. 生态学报, 2015, 35(20): 6614-6625 [88] Frey SD, Gupta V, Elliott ET, et al. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biology and Biochemistry, 2001, 33: 1759-1768 [89] 张欣玥. 森林次生演替过程中土壤多营养级生物群落多样性格局及构建机制的演变. 硕士论文. 杨凌: 西北农林科技大学, 2023 [90] Jing ZB, Cheng JM, Jin JW, et al. Revegetation as an efficient means of improving the diversity and abundance of soil eukaryotes in the Loess Plateau of China. Ecological Engineering, 2014, 70: 169-174 [91] Ferris H, Bongers T, de Goede RGM. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18: 13-29 [92] Ferris H, Bongers T. Nematode indicators of organic enrichment. Journal of Nematology, 2006, 38: 3 [93] 王楠, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同林龄柠条人工林土壤线虫群落特征. 生态学杂志, 2022, 41(2): 236-245 [94] 马辉珍, 闫本帅, 王慧玲, 等. 不同恢复年限下辽东栎林土壤线虫群落特征变化 [EB/OL]. (2024-03-15) [2024-04-01]. 生态学杂志, https://link.cnki.net/urlid/21.1148.Q.20240315.1101.009 [95] 王楠, 黄菁华, 霍娜, 等. 宁南山区不同植被恢复方式下土壤线虫群落特征: 形态学鉴定与高通量测序法比较. 生物多样性, 2021, 29(11): 1513-1529 [96] Laakso J, Setälä H. Population- and ecosystem-level effects of predation on microbial-feeding nematodes. Oecologia, 1999, 120: 279-286 [97] Wu Y, Chen WJ, Entemake WL, et al. Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China. Catena, 2021, 202: 105293 [98] Kou XC, Morriën E, Tian YJ, et al. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 2023, 29: 4069-4080 |
[1] | 郭晓伟, 张雨雪, 尤业明, 孙建新. 凋落物输入对森林土壤有机碳转化与稳定性影响的研究进展 [J]. 应用生态学报, 2024, 35(9): 2352-2361. |
[2] | 姜川, 曾小玲, 金艳强, 冯德枫, 林方美, 陈远洋, 唐建维, 刘成刚. 白蚁对土壤与植物影响的过程及机制 [J]. 应用生态学报, 2024, 35(9): 2401-2412. |
[3] | 吴傲淼, 洪宗文, 游成铭, 徐琳, 徐红伟, 徐振锋, 骆紫藤, 谭波. 华西雨屏区不同林龄柳杉人工林土壤团聚体碳氮磷化学计量特征 [J]. 应用生态学报, 2024, 35(9): 2518-2526. |
[4] | 周玥, 李娅芸, 李娜, 李会军, 张羽涵, 安韶山, 王宝荣. 黄土丘陵区降水变化下草地土壤微生物残体碳对土壤有机碳组分的贡献及其影响因素 [J]. 应用生态学报, 2024, 35(9): 2592-2598. |
[5] | 梁思维, 刘笑彤, 李英滨, 梁文举. 我国土壤线虫生态研究新进展 [J]. 应用生态学报, 2024, 35(8): 2282-2290. |
[6] | 张康, 李佳佳, 魏振浩, 樊妙春, 上官周平. 利用土壤化学计量学和酶计量学揭示刺槐林土壤微生物的养分限制状况 [J]. 应用生态学报, 2024, 35(7): 1799-1806. |
[7] | 杨钧, 王瑞霞, 王俊, 于双, 杨博, 王文强, 杨君珑, 李小伟. 毛乌素沙地不同恢复年限柠条固沙林微生物群落特征及其影响因素 [J]. 应用生态学报, 2024, 35(7): 1807-1814. |
[8] | 王紫颖, 谷思玉, 车延静, 冯景翊, 白雪燕, 张伟健, 何婉莹. 东北风蚀区不同土地利用方式下土壤有机碳组分及其稳定性 [J]. 应用生态学报, 2024, 35(7): 1815-1824. |
[9] | 朱宗斌, 彭佳新, 姚龙杰, 潘卫涛, 朱玲, 朱宗珍, 姜婧, 岳邦瑞. 整合结构连通与功能提升的黄土高原县域生态安全格局构建: 以延安市安塞区为例 [J]. 应用生态学报, 2024, 35(7): 1915-1924. |
[10] | 张茜, 马仁明, 贾燕锋, 范昊明, 楚智婷. 冻融对典型黑土团聚体输移破碎特征的影响 [J]. 应用生态学报, 2024, 35(5): 1275-1282. |
[11] | 伍海兵, 牛玉慧, 梁晶. 厨余垃圾沼渣堆肥对搬迁地土壤团聚体及其有机质含量的影响 [J]. 应用生态学报, 2024, 35(5): 1331-1336. |
[12] | 王译庆, 袁朝祥, 岳楷, 吴福忠, 袁吉, 赵泽敏, 彭艳. 植被恢复对矿区土壤微生物群落结构影响的整合分析 [J]. 应用生态学报, 2024, 35(4): 1141-1149. |
[13] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[14] | 卢国伟, 王琦璇, 杨继松, 孙丹丹, 王志康, 周迪, 管博, 于君宝, 宁凯. 黄河三角洲稻田退耕还湿对土壤团聚体组成及稳定性的影响 [J]. 应用生态学报, 2024, 35(3): 705-712. |
[15] | 谢京瑾, 许秋月, 何敏, 夏允, 范跃新, 杨柳明. 中亚热带森林更新方式对土壤团聚体磷组分的影响 [J]. 应用生态学报, 2024, 35(2): 330-338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||